

Custom domotics system for use in an auditorium

as a replacement for an existing control system

Bachelor’s thesis

Automation Engineering

Valkeakoski 08.06.2012

Cooreman, Steven

Vandermeersch, Jakob

 ABSTRACT

Valkeakoski Unit

Automation Engineering

Exchange studies

Authors Steven Cooreman, Jakob Vandermeersch

Year 2012

Subject of Bachelor’s thesis Auditorium automation using touchscreen

technology

ABSTRACT

The primary purpose of this thesis is to demonstrate an example execution

of the replacement of an old, branded control system, with a custom

modular implementation, based around a touchscreen computer acting as

the central controller. This work was commissioned by HAMK’s

Valkeakoski unit, but the same principles can be applied elsewhere.

After a study of the previous situation, complicated by the need for tailor-

ing the system to two different auditoria, a work plan has been made to

design the new control system. During the development cycle, as outlined

in this document, a custom protocol has been written, and applied over an

industry-standard serial bus. The necessary accompanying interface hard-

ware has also been designed and tested, giving the implementation already

some extra functionality over the pre-existing one. A touch-friendly soft-

ware component has also been designed, allowing for easy tailoring and

extension through the use of configuration files rather than hardcoded so-

lutions.

During the final testing phase, the whole solution was installed and tested

in an auditorium, and its user-friendliness proven in the field.

Keywords touchscreen, domotics, remote control, PC interface

Pages 81 p. + appendices 10 p.

TABLE OF CONTENTS

1 INTRODUCTION ... 1

2 PRE-EXISTING SITUATION .. 2

2.1 Connection diagrams ... 2
2.1.1 Auditorium A ... 2

2.1.2 Auditorium B ... 4
2.2 Crestron central control system ... 6
2.3 Common controlled equipment ... 8

2.3.1 Integrated lighting system ... 8
2.3.2 Projection screen ... 10

2.3.3 Audio-visual switches ... 11
2.4 Auditorium-specific equipment... 12

2.4.1 Blinds ... 12
2.4.2 Volume control .. 12
2.4.3 Infrared commands .. 13
2.4.4 Slide projector ... 13

2.4.5 Data projector .. 13
2.4.6 Switchable outlets .. 14

2.5 Summary ... 14

3 DESIGNING A REPLACEMENT ... 15

4 HARDWARE DEVELOPMENT ... 16

4.1 Base relay card .. 16
4.1.1 Microcontroller .. 17

4.1.2 Relay .. 18

4.1.3 Opto-coupler .. 18

4.1.4 Schematic and PCB lay-out ... 19
4.2 Key-pad controller... 20
4.3 Volume control extension ... 21

4.3.1 Digital potentiometer ... 21
4.3.2 DC-offset ... 22

4.3.3 Testing ... 23
4.3.4 Solution .. 24

4.4 Digital I/O extension ... 27

4.5 Infrared card .. 27
4.5.1 Infrared protocol .. 28
4.5.2 Commands ... 29

5 SOFTWARE DEVELOPMENT ... 30

5.1 Custom communications protocol ... 30
5.1.1 First version ... 31
5.1.2 Final version .. 32

5.2 Designing the relay card firmware .. 35

5.2.1 Choosing a programming language ... 35
5.2.2 Implementation of the relay card firmware ... 36

5.3 Designing the keypad controller firmware .. 38

5.4 Development of the PC software .. 41
5.4.1 Choosing a programming language and IDE .. 41

5.4.2 PC-side protocol verification ... 43
5.4.3 Understanding the concept of threading .. 45
5.4.4 Our own protocol library: putting it all together 46

5.5 Designing an intuitive user interface ... 51
5.5.1 The Metro language ... 51
5.5.2 First sketches ... 53

5.6 Creating reusable components .. 55
5.6.1 Tile ... 56

5.6.2 Preset tile ... 57
5.6.3 Light control .. 58
5.6.4 Blinds control .. 59
5.6.5 Volume control .. 60
5.6.6 Switcher control ... 61

5.6.7 Beamer control .. 62

5.7 Practical implementation ... 65

5.8 Abstraction of the room parameters .. 67
5.9 Future extensions... 71

6 INSTALLATION IN AUDITORIUM A .. 72

6.1 Key panel... 72

6.2 Beamer .. 72
6.3 Video switches. ... 73
6.4 Wiring.. 73

6.5 Installation of the relay cards .. 75
6.6 Touchscreen-PC enclosure .. 76

6.7 Block diagram ... 78

7 CONCLUSIONS ... 79

SOURCES .. 80

LIST OF FIGURES

Figure 1 Auditorium A: Original situation (block diagram) .. 3
Figure 2 Auditorium B: Original Situation (block diagram) .. 5
Figure 3 Back of the Crestron control unit ... 6

Figure 4 Touchscreen unit pulled from the Crestron control system 7
Figure 5 Helvar keypad, disconnected from the A auditorium 8
Figure 6 Connection of the lighting controller with two dimmers attached 9
Figure 7 Wiring schematic of the projection screen ... 10
Figure 8 Kramer video switch with 12 inputs and dual selection busses (VS1202) .. 11

Figure 9 Extron VGArs video switch with 4 VGA inputs and 1 output. 11
Figure 10 Final topology of the custom solution .. 15
Figure 11 Panasonic JS1-24-F relay used on the relay card. 18
Figure 12 Relay card PCB lay-out .. 19
Figure 13 Adjusted keypad schematic .. 20

Figure 14 Key-pad controller schematic .. 21

Figure 15 Digital audio potentiometer diagram. ... 22

Figure 16 DC-bias adding circuit. ... 23
Figure 17 Scope image of 1 potentiometer channel. Ch1: input Ch2: output. 24
Figure 18 AC model of the bias circuit ... 24
Figure 19 Scope image after adaption. Ch1: input Ch2: output................................ 25

Figure 20 The AC-signal on the 5V power supply ... 25
Figure 21 Large smoothing capacitors, 470µF parallel .. 26

Figure 22 The AC-signal on the 5V supply after adding smoothing capacitors 26
Figure 23 NEC transmission code .. 28
Figure 24 Protocol definition of the first version .. 31

Figure 25 Protocol definition of the final version ... 33
Figure 26 List of possible commands ... 34

Figure 27 Sample view of the MikroC IDE .. 36

Figure 28 Flowchart of the basic relay card operation.. 37

Figure 29 Flowchart of command interpretation .. 38
Figure 30 Flowchart of the keypad operation ... 40
Figure 31 First version of the checking software .. 43
Figure 32 Testing program in its final stages .. 44

Figure 33 Example IntelliSense popup ... 46
Figure 34 Flowchart of PC-side protocol handling ... 47
Figure 35 List of methods available on the bus accessing library 49
Figure 36 Inspiration for the Metro design language .. 51
Figure 37 Metro tiles on a home screen .. 52

Figure 38 Difference between Glass (top) and Metro (bottom) icons 52
Figure 39 Sketch of the base view layout ... 53
Figure 40 Tile and chromeless button sketches .. 54
Figure 41 Organizing tiles on the main screen ... 54

Figure 42 Example XAML file and its rendered design ... 55
Figure 43 Example custom styled Metro tile .. 56
Figure 44 Class diagram of the Preset tile. ... 57

Figure 45 A finished LightControl UI object ... 58
Figure 46 All of the lights in a room arranged in the program 58
Figure 47 Finished BlindsControl ... 59
Figure 48 Class diagram of the BlindsControl ... 59
Figure 49 Sample view of a VolumeControl .. 60

Figure 50 Class diagram of the VolumeControl ... 60
Figure 51 User control for a 12-input Kramer switch ... 61

Figure 52 User control for an Extron 4-port switch .. 62
Figure 53 Data projector user control ... 64
Figure 54 Data projector user control in a busy state ... 64

Figure 55 Final layout of the home screen .. 65
Figure 56 Manual control screen .. 66
Figure 57 Extract from a configuration file .. 67
Figure 58 RS232 connectors on the lecturers desk ... 73
Figure 59 Screw terminals with serial communications and relay cables 74

Figure 60 Screw terminals for A/V signals and power ... 75
Figure 61 Our relay cards mounted in the 19” rack .. 76
Figure 62 Testing the touchscreen computer in its custom housing 76
Figure 63 Completed touchscreen enclosure .. 77
Figure 64 Auditorium A: new situation (block diagram) ... 78

APPENDICES

APPENDIX 1: ORIGINAL WORK PLAN

APPENDIX 2: REVERSING THE SOUNDWEB PROTOCOL

APPENDIX 3: RELAY CARD SCHEMATIC AND PCB LAYOUT

APPENDIX 4: VOLUME CONTROL AND I/O PORT EXTENSION SCHEMATIC

AND PCB LAYOUT

APPENDIX 5: KEYPAD SCHEMATIC AND CIRCUIT IMPLEMENTATION

PREFACE

This thesis, as a whole, is the culmination of four months’ work by both

authors, Steven Cooreman and Jakob Vandermeersch. It has very much

been a joint effort, yet there is a distinct separation in tasks that were car-

ried out by the respective authors.

As it stands, Jakob has proven himself to be a valuable hardware designer,

and is thus responsible for all custom hardware designs presented in this

work. His extensive knowledge of audiovisual equipment has also been of

value during the installation process, the most of which he carried out with

good results.

Steven, on the other hand, has done most of the theoretical work and soft-

ware design. The bus structure and protocols as presented herein are en-

tirely his work. Except for the infrared transmission routine, every single

piece of software delivered as part of this project has been coded and test-

ed by him. In addition, the final redaction of this thesis has rested on his

shoulders.

ACKNOWLEDGEMENTS

This bachelor’s thesis and accompanying project work would not have

been possible without the many hours these people spent helping us:

 Antti Aimo, HAMK’s automation department supervisor, who gave us

this project

 Kalevi Sundqvist, the project’s second supervisor

 Osmo Leinainen. Whenever we needed anything for our work, he

made sure that it got to us in time.

 HAMK University of Applied Sciences, for accepting us as exchange

students

 KaHo Sint-Lieven, and especially our international coordinator, Mr

Patrik Debbaut, and HAMK’s contact Mr Dirk Thomas, for giving us

a chance to apply for an Erasmus exchange

DEDICATIONS

I, Steven Cooreman, wish to dedicate this work to my girlfriend and soul-

mate Silke Houtmeyers, for her continued mental support when the ba-

rometer dropped to sub-zero. At this point I should also dedicate this to

my parents for getting me where I am now, and my sister for not giving up

on me.

In addition, I would like to thank my high school teachers Werner

Vervoort and Guido Story for piquing my interest in the technical field,

and convincing me that such a study is not less worthy nor frowned upon.

Many thanks go out to my teacher and mentor Eric Carette, who is now re-

tiring, for some invaluable lessons learned, and a great deal of inspiration.

I, Jakob Vandermeersch, wish to dedicate this work to my girlfriend Ina

Maesen for her patience and pep talks during times of struggle; my parents

and school for giving me the chance to study abroad. And last but not least

I want to thank Steven Cooreman for all the patience he had with me dur-

ing difficult times.

ABBREVIATIONS

AC Alternating Current

ACK Acknowledge
API Application Programming Interface
ASCII American Standard Code for Information Interchange
BSOD Blue Screen Of Death
DC Direct Current

DSP Digital Signal Processing
GUI Graphical User Interface
IDE Integrated Development Environment
JIT Just In Time
KISS Keep It Simple and Stupid
LSB Least Significant Bit
MSB Most Significant Bit
NAK Not Acknowledged
PCB Printed Circuit Board
PDM Pulse Distance Modulation
PWM Pulse-Width Modulation
RMS Root Mean Square
RTOS Real-Time Operating System

TTL Transistor-Transistor Logic
UI User Interface
UX User eXperience
USART Universal Serial Asynchronous Receiver and Transmitter

XAML eXtensible Application Markup Language

XML eXtensible Markup Language

Custom domotics system for use in an auditorium

1

1 INTRODUCTION

The goal of this combined project and thesis is to design and develop a

custom tailored control system for use in both of HAMK Valkeakoski’s

auditoria, as a replacement for a Crestron system, installed some fifteen

years ago.

This Crestron system consisted of a central control unit containing most of

the interface logic, which was mounted in a 19” rack, together with most

of the audio-visual equipment of the controlled auditorium: video and au-

dio switches, amplifiers, mixers, and so on. To control the auditorium, the

Crestron central control unit uses 32 relay outputs, 2 serial (RS232) com-

munication channels, and 4 combined infrared or serial transmission ports.

That means that those ports, when used in serial mode, cannot get feed-

back from the controlled equipment.

The user interface of this system was a small touchscreen panel measuring

five inches diagonally, for which a custom interface had been pro-

grammed, and communicated with the central unit through a vendor-

specific bus structure, called ‘CresNet’. During the course of several

years, these touchscreens have been subjected to wear and tear, resulting

in several cosmetic malfunctions, such as dead pixels, faulty display lines,

and a malfunctioning backlight.

For the lighting control, a system from Finnish manufacturer Helvar had

been installed, which, at least theoretically, is controlled by the Crestron

control box by using relays to virtually press the scene buttons. In one of

the two auditoria, this system has already been switched off due to mal-

functioning, although it still works – almost – flawlessly in the other.

The control system as a whole has also seen many undocumented manual

modifications to its operation, making it difficult to get a good understand-

ing of the real situation, as opposed to the one on paper.

To improve on the situation, we have been tasked with the design, devel-

opment and implementation of a brand new control system. This system is

to be based around a 15” touchscreen computer, with integrated serial

communications and USB ports. The use of a PC meant that both the addi-

tional required control hardware, and the interface software, had to be

made by us.

In the following chapters we will clearly describe what steps we took in

our development process, including an extensive overview of the equip-

ment that has to be controlled. This leads to the final description of the re-

alized solution, and a self-evaluation of our work.

Custom domotics system for use in an auditorium

2

2 PRE-EXISTING SITUATION

We started our work with the schematic capture of how both auditoria

were wired up. For this, we already had some diagrams and building plans

from the original installation in 1995.

To our surprise, most of the cabling of auditorium A was unstructured, and

undocumented alterations had been made to the setup. The situation in au-

ditorium B was somewhat better, but the problems would start with pro-

prietary protocols in the installed equipment.

The basic design of both auditoria’s control system is fairly similar. It

consists of a central unit with integrated relay contacts, IR and serial

command buses, and a vendor-specific bidirectional ‘CresNet’
1
 bus, on

which the touchscreen on the lecturer’s desk is connected. In other words,

a star topology is used.

2.1 Connection diagrams

In the following section, we will illustrate the topology of each auditori-

um’s initial state using some diagrams.

2.1.1 Auditorium A

Auditorium A is older, and the most altered from the original wiring dia-

grams. There are a few special and strange design choices in the topology,

outlined below.

 The only volume control present is controlling the general volume.

That means that there is no option to separately control the volume of

the external sources, the microphones, or the PC, directly from the

touchscreen. Seeing that the external sources are connected on XLR

and RCA busses, and are expected to be mic-level, and not line-level,

this is a rather curious thing.

 The video sources are switched twice: In the front of the auditorium, a

VGA switch is used to switch between the PC and laptop video signal.

That switch, curiously, has no audio switching capabilities. The con-

trol rack contains another switch, used to switch between the different

audio/video sources.

 With regards to the audio switching/mixing: first of all, the audio is

switched together with the accompanying video signal. While mixing,

all channels are directly mixed with each other, which means that no

single channel can be muted. That is a remarkable choice, considering

a possible future addition of for example a DVD player. The audio

would not mutable while showing a video, eliminating the lecturer’s

possibility to show a muted movie while giving his own explanation.

Of course, this is only one example of a situation where equal mixing

of all audio sources is not very desirable.

1
 CresNet is an RS-485 based serial bus, of which the specifications are not publicly available

Custom domotics system for use in an auditorium

3

 The blinds and projector screen have no feedback loops, this means

that the system cannot know whether they are currently up or down.

Instead, the control circuit relies on the built-in end stop, which dis-

connects the power from the motor if the limit of travel has been

reached. In the event of a failure of said end-stop, this could lead to

the motor burning out.

Crestron 5"

Touchpanel

Crestron Control

Unit
CresNet

Computer
Audio

Mic

Volume
Control

Mixer

Audio
sources

Lecturer’s desk

Amplifier

Computer
Video

Laptop Video

External
Video

Manual
Video Switch

AV-switch

Control

Beamer

Slide
Projector

Blinds Up/
Down

Light Relays

Power outlet
groups

Relays

Audio
to mixer

From
A/V-switch

Figure 1 Auditorium A: Original situation (block diagram)

In Figure 1 we have portrayed the basic schematic outline of the original

situation in auditorium A. This seems to be a very elaborate, and hence

expensive setup for few capabilities. Over the course of this chapter, we

will delve deeper in each unit’s control specification.

Custom domotics system for use in an auditorium

4

2.1.2 Auditorium B

The situation in auditorium B is similar, although the room itself has a dif-

ferent layout, and uses more recent equipment. The wiring has also been

laid out better, using numbered cables, which made our process of revers-

ing the complete structure a lot easier.

Not unlike the situation in auditorium A, this one also has a few quirks:

 External video seems to be connected on a separate input of the beam-

er, which means that the user still needs the remote control to switch

sources. Although the beamer does possess a control interface, it has

been left unused.

 Almost all audio channels are routed through a networked DSP, which

is the correct thing to do in this kind of situation. However, there is

absolutely no information about which program has been loaded into

the DSP, or the protocol used between the Crestron unit and the DSP.

This makes our work of adapting the control system to a new PC-

based much more complicated.

 DVD audio is decoded through an AV-receiver in surround sound,

and there are speakers for surround, but the whole system has been

cabled for stereo sound.

 All AV-sources (VCR, DVD and cassette/FM player) are controlled

through small infrared emitters glued to their infrared port. For these

controls, too, have all protocol definitions gone missing. Furthermore,

they currently do not function anymore.

 Something has gone wrong with the implementation of the lighting

system: if the lights are switched off using the Crestron touchscreen

and the Crestron system is turned off, they cannot be switched back on

using the button at the door. The same goes for the stair lighting.

 All lights are switched on and off by means of relay-contacts. This

means that although there is a dimmable feature in the lighting struc-

ture, the lights are turned on and off simply by cutting the power sup-

ply to the lights.

Custom domotics system for use in an auditorium

5

Crestron 5"

Touchpanel

Crestron Control

Unit
CresNet

Mic

DSP

Surround
decoder

External
Audio

Lecturer’s desk

Amplifier

Computer
A/V

Laptop
A/V

External
Video

Manual
Video Switch

AV-switch

Beamer

Projection-
screen

Light Relays

Power outlet
groups

A
u

d
io

Video

Video

Control

R
elays

External
Audio

External
Video

IR-Control
Amplifier

Light button I/O contacts

Figure 2 Auditorium B: Original Situation (block diagram)

In Figure 2 we have portrayed the basic schematic outline of the original

situation in auditorium B. If the schematic is compared with the one of au-

ditorium A, it becomes clear that the basic topology is laid out similarly in

both auditoria.

Custom domotics system for use in an auditorium

6

2.2 Crestron central control system

Up until now, we have referred to the central control box simply as

‘Crestron controller’. But what is it?

To answer that question, we must refer to the documents provided online

by the manufacturer, Crestron Inc. from the USA. According to them-

selves, Crestron is the leading provider of control and automation systems

for user interaction. Essentially, this means that they manufacture and

support a whole range of products, designed to operate together on a sin-

gle bus interface, to control everything that is controllable in a room, audi-

torium, house, theatre, and so on.

The controller that has been used in our environments is the CresNet II-

MS. It is a 19 inch rack-mountable controller, which takes care of all the

logic in the control system. In other words, all Crestron expansion cards

and interfaces are created ‘dumb’.

The specific actions and designs for this system are created using a custom

programming language called ‘Simpl+’. Once this program is created, it is

uploaded to the controller using a serial interface. This means that even if

it would be desired, one cannot recreate the original program by reading

the firmware of the controller. That is why we had to reverse engineer all

connections.

Figure 3 Back of the Crestron control unit

All of Crestron’s components are interconnected on a bus system, also

known as ‘CresNet’. From what little information we have gathered by

searching websites and some discussion groups on the internet, the bus is

actually an RS-485 compliant bus. This seems to fit with the connector la-

belling on the unit itself: it has contacts for ‘+24’, ‘Y’, ‘Z’ and ‘GND’. All

components are thus powered from a single supply rail of 24V, which is

why a fairly powerful supply is also present in the rack.

RS-485 specifies a bidirectional half-duplex bus, controlled by one master,

who has to poll each slave to get a response, and avoid collisions on the

bus. This means that it is not plug-and-play at all, for each component

must be defined in the program as well to get the controller to recognize it.

As per the 485 specification, signals ‘Y’ and ‘Z’ are each other’s opposite,

so that interference on the bus is minimized. On top of that, the use of

twisted shielded cable is recommended by both the manufacturer and the

‘official’ specification.

Custom domotics system for use in an auditorium

7

The user almost never gets to see the central controller though. All interac-

tions are based around a graphical user interface, displayed on a Crestron

touchscreen, the PC-1500D. This is a grayscale touchscreen, with a screen

diagonal of five inches. It hooks up to the CresNet bus, and is entirely pas-

sive. This means that if the bus fails, the last screen will still be displayed

as long as the power is present, but that no interaction is possible.

From this, we can gather that the display data is sent from the central unit

to the display whenever a screen refresh is needed, and that the coordi-

nates of user touches are sent back to the central unit.

Figure 4 Touchscreen unit pulled from the Crestron control system

The program that has been written for the control system back in the nine-

ties had several flaws: to begin with, it was unilingual in Finnish, which is

not entirely appropriate for a university with an international focus, and it

used a hardcoded list of buttons and labels. This meant that for each

change in the infrastructure, the program had to be remade, and the origi-

nal program source code has never been disclosed by the installer. Thus,

expansions to the system were not really an option without a major over-

haul.

With our replacement system, we plan on fixing this: the control program

will have its full source code disclosed, and be structured appropriately so

that eventual changes can be made by simply adjusting a line in the con-

figuration file. For more elaborate changes, such as adding equipment, the

process is documented. The program will also be multilingual in English,

Finnish and Swedish.

Custom domotics system for use in an auditorium

8

2.3 Common controlled equipment

There is some equipment that can be found in both auditoria which has a

similar way of being controlled. In order to simplify future expansions

and/or the use of this solution in other auditoria, we have taken a generic

approach to the problem, so that the solution can be easily adapted to other

needs.

2.3.1 Integrated lighting system

Originally, both lighting systems where controlled by a Helvar system.

Helvar is a Finnish producer of lighting control systems. According to

their website, they are the most reliable ballast supplier and lighting con-

trol specialist in Europe.

This specific lighting system works with a central controller with four in-

dividually controllable analogue zero to ten Volt outputs. These outputs

are then connected to separate dimmer units, which can be configured to

act as either resistive dimmers, for use with standard incandescent bulbs,

or as inductive dimmers for use with capable fluorescent tubes.

The controller also possesses a couple of relay outputs that can be config-

ured together with the scenes. At this moment, these outputs are not in use,

and it is unlikely that they ever will be.

The voltage level on each output is controlled by the user through one or

more key panels. These can either be programmed in scenes with preset

output levels, or as up/down keys for a specific channel. This separation is

made at the time of programming. An LED on the keypad provides feed-

back about which scene is selected, or which light is on, depending on the

operating mode.

Figure 5 Helvar keypad, disconnected from the A auditorium

These key presses are received by the dimmer control trough a vendor

specific bus. One peculiarity of this bus is that both power and data are

supplied by only two wires, reducing the installation cost.

Custom domotics system for use in an auditorium

9

During a previous update of auditorium A, this system was switched off

and replaced by relay contacts, in order to act as a normal light switch. Be-

fore that, though, it was controlled by a keypad at the door, so the user

could switch the lights on immediately without having to go through a

possibly very dark auditorium in search of the Crestron touch panel.

In auditorium B, however, the Helvar system is still in use. The system is

controlled by a transfer module that interprets Crestron outputs as

pushbuttons to activate certain scenes. So, more specifically: that module

acts as a keypad on the keypad-bus, and its ‘keys’ are pressed by relay

contacts.

Figure 6 Connection of the lighting controller with two dimmers attached

Custom domotics system for use in an auditorium

10

2.3.2 Projection screen

The projection screens in both auditoria work in the same way. They are

controlled by relay contacts which can switch the direction of the screen.

The screen motor keeps turning until the screen reaches its limit switch.

When the direction is changed on the Crestron interface, the screen moves

in the other direction and keeps continuing until it reaches the other limit-

ing switch.

The screen can manually be stopped at a point of choice by the Crestron

system if wanted by the operator.

In auditorium B, there is a timer which makes the relay contact open after

a certain time. This time exceeds the time needed for the screen to reach

the limit-switch, and is only useful as a safety feature to prevent damage

due to malfunctioning limit switches.

Figure 7 Wiring schematic of the projection screen

As seen in the instruction manual, there are regrettably no return channels

to signal the end of travel. This means that we too are limited to the im-

plementation of timers to approximately switch off the relay when the

screen has reached the desired position.

Another option would be to use the adjustable limit switches, and tailor

the amount of travel to the data projector’s image. However, this would

obstruct any further addition of projection equipment that might project a

bigger image.

Custom domotics system for use in an auditorium

11

2.3.3 Audio-visual switches

There are a total of four different A/V switches throughout the two audito-

ria. The first three are ‘Kramer’-branded switches. These three switches

are controlled by the central command unit trough a serial RS232 compli-

ant communications link. Regrettably, that control bus can only be used to

set the active channel, and not request the currently selected channel. The

switches are rack-mountable with a height of two units in a 19 inch rack.

Figure 8 Kramer video switch with 12 inputs and dual selection busses (VS1202)

The other one is made by Extron, and has originally been implemented as

a manually controlled switch, presumably because the switch was added to

the infrastructure at a later date, and the Crestron program source code

was not available to make changes. It can, however, also be controlled

through a serial link, which is what we plan to do with the new system.

Figure 9 Extron VGArs video switch with 4 VGA inputs and 1 output.

The basic setup in both auditoria is the same: a VGA switch for multiple

computer inputs and an A/V-switch for video, DVD and computer audio.

In auditorium A: A Kramer VS1202S switch is used as the A/V-switch,

and an Extron VGArs SW4 is used as VGA-switch. Only the A/V-switch

is remote controlled by Crestron. The second video output is a video feed

for the monitor built into the lecturer’s desk. The VGA-switch has to be

controlled manually at the lecturer’s desk.

In auditorium B: A Kramer VS1202YC switch is used as the A/V-switch

and a Kramer VP-61 is used as the VGA-switch. In this configuration both

devices are controlled by serial communication.

Custom domotics system for use in an auditorium

12

The KRAMER VS1202 is a 12 A/V-input and 2 A/V-output matrix. An

input consists of 1 stereo sound-feed and 1 video-feed. An advantage of

this A/V-switch is that output-A and output-B don’t need to be connected

the same channel. This means that one can have two display devices each

displaying another audio-visual feed. This sort of switch has its main use

in television and broadcasting studios.

The KRAMER VP61 is a 6 input and 1 output VGA/audio-switch. Just

like the 12x2 switch it can be controlled both manually and by serial

communication.

2.4 Auditorium-specific equipment

Each auditorium has some equipment specific for the auditorium. This

means adaptations in the control system need to be made in order to suc-

cessfully implement these devices.

2.4.1 Blinds

In auditorium A, blinds are used to darken the room. These blinds cover

all the windows and render the auditorium pitch black when they are all

the way down.

The blinds work much in the same way as the projection screen. This

means they are controlled by relay switches providing the upwards and

downwards motion, and that the motors are protected by limit switches.

Also much in the same way as the projection screen, these too have no re-

turn signalling to indicate that the limit of travel has been reached. To pre-

vent motor burnout in case of a limit switch failure, we will have to im-

plement a timer as well for the blinds.

2.4.2 Volume control

Both auditoria have a system to control the audio volume. In auditorium

A, this is an expansion card integrated into the Crestron system. In audito-

rium B, the volume is controlled through a SoundWeb-branded networked

DSP
2
 manufactured by BSS, and a surround decoder.

In auditorium A, only the main volume can be adjusted. This means that if

you want to mute a video, you can’t use the microphones at the lecturer’s

desk. Because this is a big trade-off, we plan to implement more volume

controls in our system, so that more inputs can be independently con-

trolled.

The network DSP in auditorium B has eight inputs and outputs. The de-

vice can be programmed to the desired specifications, and can be con-

trolled through a serial communications link. The DSP is not only used as

2
 DSP: Digital Signal Processing: the manipulation of an analogue signal through a digital circuit

Custom domotics system for use in an auditorium

13

a volume control unit but as an audio mixer as well. Because the DSP is

programmable, the volume of the audio-visual devices can be adjusted

separately from the microphone and main volume.

The surround decoder is used as a buffer for the stereo audio. When a

DVD is played a digital audio signal is sent to the decoder. The decoder

transfers the generated surround signal to the first five inputs of the DSP.

The subwoofer is left unconnected.

2.4.3 Infrared commands

The Crestron system simulates an infrared remote control. Because there

are multiple devices at the lecturer’s desk, you would need many separate

remote controls lying around on the desk, with a chance of them getting

lost. By integrating the basic infrared commands into the Crestron system,

and assigning an IR port to each separate device, those remote controls are

made redundant.

In the implementation of auditorium B, the decision was made to put each

infrared transmitter on a separate channel of the Crestron control system.

While not strictly necessary, this does greatly reduce the chance of multi-

ple devices responding to the same command. In reality, however, most

manufacturers assign so-called hardware addresses to their devices, in

such a way that a remote can only be used for one specific device or range

of devices.

So, unless all of the devices originate from the same line and manufactur-

er, one could safely transmit all codes on the same channel and hook up

the transmitters in series.

2.4.4 Slide projector

In auditorium A, a slide projector is available. This projector is switched

on and off by means of a switchable power outlet. The remote control of

the projector is simulated by Crestron-controlled relay switches which

switch on and off quite rapidly, as to mimic a press on a button.

This projector isn’t used anymore, probably due to the fact that the lamp

bulbs have broken down, and the connection with the control system has

been severed. We plan on reinstating this projector to a working condition.

2.4.5 Data projector

Both auditoria have a data projection system. These projectors have been

changed during the years. This means that the serial protocol originally

programmed into the Crestron command system, does not apply to the

new projectors anymore. This results in the usage of the projector’s own

infrared remote by the lecturer.

As mentioned earlier, each projector has two inputs which are used for the

moment: one coming straight from the computer sources (i.e. PC, laptop,

Custom domotics system for use in an auditorium

14

etc.) through a VGA switch, and one coming from all the other external

sources through an A/V switch. So, in order to change the active input, the

remote must be used again, in conjunction with the switch’s control if

necessary.

This is not a very user-friendly procedure, as the primary purpose of a

command system is to facilitate all actions and reduce them to one press of

the button. Therefore, we plan to implement the new serial protocols and

incorporate all necessary commands into our software.

2.4.6 Switchable outlets

Each auditorium also has switchable power outlets. This means certain

devices can be switched on and off by switching the mains power supplied

to the devices. For example, the slide projector mentioned earlier is

switched on and off by means of a switchable outlet.

The complete audio-visual system in both auditoria is also switched on

and off in a similar way, to reduce unnecessary power consumption when

the system is not in use.

In auditorium B, there are outlets embedded in the floor. So, if the at-

tendees bring their own laptop, they can use the supplied outlets, only if

the lecturer allows it.

2.5 Summary

Although the two auditoria are different on a lot of aspects, the same type

of system is used to control all conveniences. A star topology is used in

both systems with a Crestron controller as the central point. This control

system is used to switch relays and control devices by means of serial or

infrared communication.

Custom domotics system for use in an auditorium

15

3 DESIGNING A REPLACEMENT

To design a replacement for the pre-existing system, we started out with

the idea to make a new control panel for the Crestron system. After some

research we noticed it was very difficult to find any information about the

CresNet protocol. Due to the lack of information, it would either take a

very long time to reverse-engineer their protocol, or prove to be impossi-

ble at all. Also, reverse-engineering a proprietary protocol and then apply-

ing it in a custom solution might prove to be a legally questionable feat.

This more or less forced us to develop our own bus system and accompa-

nying hardware.

We were given two 15” touchscreens we could use for the project. These

touchscreens are full industrial computers, and have five serial ports each.

The serial ports are RS232 compliant, which means that microcontrollers

can be easily communicated with. This made it easier for us, because we

could make a serial bus system for controlling the conveniences in the au-

ditoria.

The main goal for the replacement system is modularity. This means that

changes made to the auditoria in the future can be integrated into the sys-

tem with ease.

All existing devices should be controllable by the new system by means of

preset buttons on the touchscreen, the manual control interface on the

touchscreen, or the key panel at the door, should there be one.

Figure 10 Final topology of the custom solution

Custom domotics system for use in an auditorium

16

4 HARDWARE DEVELOPMENT

To achieve the goals set in the previous chapter, new hardware had to be

developed. A relay card to switch various outputs, a keypad to control the

lights without the touch screen, and a volume controller to adjust the

sound levels of the audio sources will have to be made in order to retain

the basic functionality that was available previously. A digital I/O inter-

face and an infrared card to control the video and audio equipment can al-

so be developed, but they are not explicitly necessary.

4.1 Base relay card

The Crestron system uses relay switches to switch lights and power outlets

on or off, and to move the curtains up and down. These relays are wired to

control other relays which then switch the mains power to the equipment.

This means that the control system can work on a safe DC
3
 voltage of

24V.

The base relay card we designed should replace the Crestron system and

switch the 24VDC voltage to switch the main relays. By use of a micro-

controller, these helper relays will be switched. The microcontroller’s out-

puts are digital outputs, and so have a voltage level of 0 or 5V. The out-

puts drive LED’s which were added to give visual feedback of each re-

lay’s status. Through the use of an opto-coupler, the logic high or low

from the microcontroller is used to control the state of a transistor. If the

transistor gets light from the LED, it will go into a conducting state, and

the current will flow through the relay coil, activating the relay contact. As

such, the opto-coupler provides galvanic separation of the two supply

rails.

Every microcontroller has two USART
4
 channels, which are used for in-

ter-card communications over the RS232 standard. Because the on-chip

USART operates at the core chip voltages, in our case at 5V TTL
5
, level

translation was needed to convert the TTL levels to RS232 levels. This

conversion is provided by a MAX232 transceiver chip, with two integrat-

ed transceivers, so that two channels can be provided. The two channels

are needed to connect the cards to each other, and thus creating a bus sys-

tem, where each card determines whether the command is for him, and

passes it on to the next card if it is not.

Because of that, every card needs to have an address. This address is user-

configurable by means of a series of five switches, representing the binary

value of the configured address. Using five bits, there are 36 possible ad-

dresses. Multiplied by eight relays per card, this gives us a maximum of

288 switchable relays on the bus. Of course, if another relay card is de-

signed with more relays per card, this number will go up as well.

3
 DC: Direct Current

4
 USART: Universal Serial Asynchronous Receiver and Transmitter

5
 TTL: Transistor-Transistor Logic. Logic zero is 0V, logic high is 5V.

Custom domotics system for use in an auditorium

17

After all the basic goals were implemented, an expansion port was added

to the card. This port provides an I
2
C interface plus a 5V supply voltage. It

will be used later on by the volume control and I/O extension cards, and

can also be used for future extensions.

4.1.1 Microcontroller

As mentioned before, the microcontroller is the heart of this relay card. It

handles all communications and controls. Due to previous experience and

projects at HAMK, a PIC microcontroller was preferred. With the micro-

architecture already decided upon, a suitable microcontroller for this pro-

ject could be chosen. It should have at least the following features: two

USART channels for communications, several PWM
6
-modules for the

eventual implementation of an IR transmitter, and enough I/O-pins to

drive the eight relays.

The USART channel will be used to set up communications between the

relay cards on the bus, and the touchscreen computer, which acts as the

bus’s master. The importance of the second USART channel is to be able

to retransmit the received data down the line if the command is targeted at

another card.

An infrared card will be designed to control several A/V-peripherals. This

card should be able to fit on the same bus structure as the relay cards. The

PWM-modules are important for this part of the project. The use of the

same microcontroller for both cards makes designing and programming its

functions a bit easier, and lowers the cost when buying in bulk.

The third and last major feature the microcontroller should have, is enough

I/O-pins. As mentioned before, the microcontroller must be able to drive

eight relays at the same time. At the same time, five address bits must be

read to allow the card’s address to be set by the user.

After deciding on the necessary features, we selected a microcontroller

based on its price. The PIC18F24K22 was the cheapest part to meet all

demands. It also has two I²C-busses which could be used for future expan-

sions, such as the volume control and I/O-port expander. The 24 I/O- pins

on the microcontroller satisfy the need to control the eight relays, read the

address switches and implement the two communications channels.

The PIC runs on a power supply between 2.5 and 5V, and has a maximum

output current of 20mA per pin. This maximum should be taken into ac-

count when the microcontroller is used to drive external loads, such as the

LED’s and opto-coupler. To supply the core clock frequency, an external

oscillator is used containing a crystal of 16MHz. This frequency is not the

the maximum for this microcontroller, but enough to run the program at a

satisfactory speed.

6
 PWM: Pulse-Width Modulation

Custom domotics system for use in an auditorium

18

4.1.2 Relay

The relays on the relay card will be used to switch other relays. These oth-

er relays are already installed in the wiring cabinet as part of the previous

situation, and switch the mains according to their function. These relays’

coils operate on a 24V direct current supply. To design our relay card, we

chose to use the already available 24V for our relays. Next to the switch-

ing voltage for the relay, the durability and price were a decisive factor.

The relays should be able to last a long time, because this is a permanent

installation, and thus shouldn’t require much maintenance.

Figure 11 Panasonic JS1-24-F relay used on the relay card.

The relays we’ve chosen, with part number JS1-24V-F from Panasonic,

are of an industrial type. When switched, the relay needs 15mA of current

flowing through its coil to hold the contact, and so consumes 360mW of

power. To ensure a long lifespan, the relay should not be switched more

than 40 times per minute.

An extra feature of this relay is the presence of normally open as well as

normally closed contacts, which is an asset to the modularity of the relay

card.

4.1.3 Opto-coupler

The specifications, by which the opto-coupler should be chosen, are a

combination of properties of both the PIC and the relay. The function of

the opto-coupler is to provide a galvanic separation between the 5V and

24V supply rails on the PCB.

The maximum continuous current allowed on the input of the opto-coupler

is 50mA. This is more than double the amount of current an I/O-pin of the

PIC can supply. The same maximum amount of current is allowed at the

output. This also shouldn’t pose a problem, because the relay coil only

draws 15mA. The maximum collector-emitter voltage of the output tran-

sistor is 35V, which is well over the used 24V of the relay.

We have placed an indication LED between the I/O-pin and opto-coupler

input, in order to provide visual feedback when the relay is activated. To-

gether with the internal LED in the opto-coupler, a nominal voltage drop

of 3V is present. This leaves us two Volts to limit the current with a resis-

tor. A resistor of 120 Ohm, over which the remaining two Volts are

Custom domotics system for use in an auditorium

19

dropped, limits the current to 18mA. This ensures that the operating condi-

tions of the microcontroller’s output pin are respected.

4.1.4 Schematic and PCB lay-out

Several targets were set for the design of the PCB
7
. The PCB had to fit on

a single layered Eurocard
8
. Because this is a standardized size, there was

no need for cutting the PCBs to size, reducing the amount of work needed.

Another important feature during the design of the PCB is the transfer of

power. Not only the data should be looped through from one card to an-

other, but there should be connectors loop through the power supply as

well. The result is a separate supply chain of 24V and 5V by means of

double bipolar screw terminals. On one of the pair, the supply is connect-

ed, and the other one can then be used to provide the supply for the next

card.

The PCB is divided in a 5V and a 24V section. The 5V section contains

the microcontroller, LED’s and the MAX232. The 24V section supplies

power to the relay switches. On the PCB layout, there is a clear separation

of the supply voltages.

Figure 12 Relay card PCB lay-out

In Figure 12, an image of the final PCB layout is displayed. In this image

the ground plane is not shown, in order to display a clear image of the

connections. A larger version of this image is available in the appendix,

together with the schematic of the card.

7
 PCB: Printed Circuit Board

8
 Eurocard: A standard format for PCB’s of 100 by 160 millimetres

Custom domotics system for use in an auditorium

20

4.2 Key-pad controller

In auditorium A, an eight key panel was installed to control the Helvar

system. This system was not in use when we arrived due to the malfunc-

tioning of the control module. During the bestowal of our project, our su-

pervisor mentioned that it would be nice if the keypad were to work again.

At first we tried to reinstate the Helvar system. The control module, used

to translate the commands from the keypad, malfunctioned. Several LED’s

on the keypad started blinking without any apparent reason.

The malfunctioning of the Helvar system in auditorium A left us with no

dimmable lights, a malfunctioning keypad and a triple cored cable to the

technical room. The presence of the cable makes serial communication

possible. Our solution was to reuse the switches and housing, but to re-

place the logic board of the keypad with a microcontroller. By doing so,

we would have the keypad interfacing directly with our own serial bus,

enabling it to switch relays in order to control the lights.

Figure 13 Adjusted keypad schematic

To be able to reuse the existing keypad, several adjustments had to be

made. The switches were hardwired as pull-down switches, which means

that the signal from the key is tied to ground when the key is pressed. In

order to restore the signal to logic high when the switch is released, the in-

ternal pull-up resistors of the PIC where enabled. This solution was the

easiest and required the lowest amount of extra parts, namely zero.

The LEDs on the key-pad are driven by inverted logic. This means that the

I/O-pin has to be forced to ground (0V) level to enable the LED. The

firmware to control this keypad will be explained in the software part of

this document.

Custom domotics system for use in an auditorium

21

The implementation of following schematic was done on a breadboard

PCB. The reason for this was the low complexity of the circuit. Another

advantage was the ease of cutting the breadboard PCB to the exact shape

needed to fit in the keypad’s plastic housing.

Figure 14 Key-pad controller schematic

The power for this keypad controller is supplied by a 5V adaptor. It was

important that when this power supply was plugged in, the relay cards

were already operational. This procedure was needed because when

plugged in, the first thing the microcontroller did was to ask the relay sta-

tus, and wait for an answer. If the relay card was not operational, the key-

pad would be stuck in an endless wait condition.

This problem has however been fixed with a software update, as described

in chapter five.

4.3 Volume control extension

In important feature in an auditorium is the possibility to adjust the audio

volume. On the PIC of the relay card, an expansion port with I²C is avail-

able. An expansion card with I²C digital potentiometers looked like the

ideal solution for the volume control.

4.3.1 Digital potentiometer

If the volume of an audio source were to be adjusted by this potentiometer,

a logarithmic potentiometer would be needed because the relation between

the level of the electrical sound signal and the perceived sound level is ap-

proximately logarithmic. We found a digital audio potentiometer on the

Custom domotics system for use in an auditorium

22

website of Maxim semiconductor, and sampled it for testing. The potenti-

ometers used in the final implementation were ordered from Mouser.

This specific potentiometer is designed with audio applications in mind.

The specific field of use for this potentiometer gives us some extra ad-

vantages. For example, it will only change the wiper position when a zero-

crossing
9
 is detected, which prevents a popping sound during the change.

The potentiometer is able to attenuate the signal in steps of 1dB. This

means that you can attenuate the signal discretely until -63dB before the

mute function becomes active. When the mute function is activated, an at-

tenuation of more than 90dB is attained.

Figure 15 Digital audio potentiometer diagram.

The I²C-bus uses 7 bit addressing. As shown in the diagram, the potenti-

ometer has three configurable bits which can be set by tying them to either

ground or supply voltage. These three bits make it possible to address

eight different stereo channels on one I²C-bus. Both channels of one po-

tentiometer chip can be adjusted simultaneously for a stereo source, or

separately to have mono audio channels.

4.3.2 DC-offset

Unlike analogue potentiometers, digital ones are not unipolar. They have a

high side and a low side. In this particular case, the audio signal is fed into

high input, and the wiper is the output signal of the attenuator circuit. Due

to the digital character of the potentiometer, every signal lower than GND

and higher than VCC will be clipped. So, in order to be able to regulate

9
 A zero-crossing is when there is no voltage difference between the H and L input of the potentiometer.

Custom domotics system for use in an auditorium

23

our audio AC signal, we will have to apply a VCC/2 bias to it, and subse-

quently reference it to VCC/2.

Figure 16 DC-bias adding circuit.

The addition of a VCC/2 DC-bias is done by the following circuit. Two

voltage dividers are used. One voltage divider is used to provide a stable

VCC/2 reference to the low end of the potentiometer. This voltage divider

uses relatively low resistance values to create a stable voltage. However, a

trade-off has to be made between reference stability and consumed cur-

rent.

The other voltage divider uses both of the R1’s as resistors. These resistors

have a relatively high value, and are used to add the DC-bias to the audio

signal. Through the use of this circuit, both ends of the potentiometer are

referenced to the same voltage, so that the nominal signal (UH – UL) is the

same as the input signal before the addition of the bias.

The capacitor Cin is used to block the external DC bias, should any be pre-

sent, and keep the VCC/2 DC-bias from leaking into the input. When

choosing the value of R1, this capacitor should be taken in account be-

cause it creates a high-pass filter in combination with those resistors. The

resistor value should be chosen high enough to ensure that the low fre-

quencies are not filtered out.

This potentiometer can’t provide a large current on its output. This short-

coming is solved by using an operational amplifier (opamp) as an output

stage to buffer the signal. We provide this opamp with an asymmetrical

power supply: 5V and GND. This way, the signal is buffered, and the cur-

rent that flows to the output is provided by the opamp. At the output of the

opamp, another capacitor is placed in series to block the DC-bias, and only

let the AC audio signal pass through.

4.3.3 Testing

To test the circuit, several sine signals were provided on the input. The in-

put signal is measured on one channel of the oscilloscope. All probes are

set to the x10 attenuation setting, and so is the scope. The goal of this test

is to see whether the mute function really works.

Custom domotics system for use in an auditorium

24

Figure 17 Scope image of 1 potentiometer channel. Ch1: input Ch2: output.

On the scope image, the input voltage is 639mV RMS
10

, and the output is

15.3mV rms. This gives an attenuation of (

) . This

measurement clearly points out that something is not correct, because the

datasheet of the potentiometer states that an attenuation of more than 90dB

should be attained while in mute.

4.3.4 Solution

After analysing the existing schematic, we came to the conclusion that the

VCC/2 reference on the low input of the potentiometer fluctuated together

with the input. To troubleshoot this problem, the AC model of the circuit

was examined. The schematic shows that when an AC signal is added, a

little part of the signal will arrive at the low input, which is the point of

reference. To stabilize the reference voltage, a capacitor was added be-

tween the low input and ground. When added to the AC model, this would

result in a short-circuit for AC signals between the low input and ground,

eliminating any AC signal leaking into the reference.

.

Figure 18 AC model of the bias circuit

10

 RMS: Root Mean Square, the DC voltage that would cause an identical power dissipation in a resistive

load.

Custom domotics system for use in an auditorium

25

This solution was tested, and preliminary approval was obtained through

real-world testing. The ultimate confirmation was provided by measuring

the output signal of the improved circuit with the oscilloscope.

Figure 19 Scope image after adaption. Ch1: input Ch2: output

When the same signal as before is inserted in the potentiometer, practical-

ly no signal is visible anymore on the output. The small signal that is still

present, is unavoidable due to the internal schematic of the digital potenti-

ometer chip.

All previous tests and measurements were conducted with a laboratory

power supply. However, a high frequency tone was present in the audible

sound after the implementation in the auditorium.

Figure 20 The AC-signal on the 5V power supply

Custom domotics system for use in an auditorium

26

The cause of this problem originates in the power supply. When the power

supply output voltage was checked on a scope, a small AC signal was pre-

sent.

Because the volume of microphone signal is adjusted before the pre-amp,

even the little AC signal of the power supply is a big signal in comparison

with the output signal of the microphone. This causes the high frequency

sound to be heard through the speakers, because it first leaks into the mi-

crophone signal, and is then amplified a hundred-fold by the pre-amp.

A solution for this problem seems very easy. Two large capacitors were

placed in parallel with this supply, in an attempt to remove the AC ripple

signal.

Figure 21 Large smoothing capacitors, 470µF parallel

These capacitors smoothed the signal, as shown in the next scope image.

However, when the circuit was tested again under operating conditions,

the high frequency tone could still be heard.

Figure 22 The AC-signal on the 5V supply after adding smoothing capacitors

Custom domotics system for use in an auditorium

27

Even though this signal looks cleaner, there is still a lot of noise on it that

was still leaking into the audible signal of the microphones.

Our final solution was to provide the potentiometers with their own 5V

power supply. This 5V is provided by an LM7805 linear voltage regulator

which should have a noise suppression factor in the audible range of 70dB

or more. The supply for this voltage regulator is provided by a universal

adaptor which set to provide 6V. A practical test proved that the high-

pitched tone had disappeared from the amplified sound signal, or was at

least not audible anymore.

4.4 Digital I/O extension

When the relay cards were designed, almost all the I/O-pins were in use.

The remaining I/O-pins were used as an extension port. This port provides

an I²C bus and a 5V supply, and is already used by the volume control cir-

cuit. This means that when making a digital I/O extension, a chip with an

I²C interface will need to be selected.

To provide extra digital I/O-pins, a remote eight-bit I²C I/O expander was

chosen. We chose the PCA9554, made by Texas Instruments. There are

two versions of this chip: the normal one, and the A-version. They are es-

sentially the same device, except that the non-configurable part of the bus

address is different, so that up to 16 expanders can be addressed on the

same bus.

Next to the standard SDA and SCL signal used by I²C, this port expander

has an interrupt line available. This interrupt line becomes active when an

input changes in state. The interrupt function is only active on each pin

that is configured as an input. It could be used to automatically respond

when a key is pressed, eliminating the need for polling.

The original idea for use of this port expander, was the simulation of the

previously mentioned keypad. The originally installed system containeda

device which acted as a keypad towards the Helvar controller, but was

triggered by digital inputs. This way, the scenes could be triggered by

switching the outputs of the port expander.

However, due to the malfunctioning of the Helvar system in auditorium A,

this port expander is currently not in use. It is installed though, and can be

implemented in the future, when new equipment is installed which needs

extra I/O-pins. The I/O-expander could also be used in auditorium B,

where the Helvar system is still in use.

4.5 Infrared card

The infrared cards interface with the bus the same way the relay cards do.

They would be attached to the same bus as the relay cards, and data not in-

tended for them would pass through to the next card.

Custom domotics system for use in an auditorium

28

Just like the relay card, the microcontroller is the heart of the infrared

card. The specific microcontroller used for the infrared cards is the same

as used for the relay cards. It has the most important feature needed to

transmit IR-commands available: PWM-modules.

4.5.1 Infrared protocol

The infrared protocols used in auditorium B are based on the NEC format.

What is important in this format, is that the bytes are transmitted in the

right sequence, and that every byte is transmitted LSB
11

 first.

When a logic high is transmitted, the actual pulse is a carrier frequency

of38kHz with a duty cycle of 33%. The logic one and logic zero are creat-

ed by PDM
12

. Both logic values start with a pulse of the same duration.

The value of the bit is determined by the duration of the low-state. Be-

cause the active pulse remains the same duration, it is the duration, or the

distance when the signal is plotted using a time reference, of the low state

that changes. A short low time represents a logic zero and a long low time

a logic one. These times can differ depending on the brand of equipment.

The duty cycle of the carrier signal is chosen for a special reason. Because

of this duty cycle, the instantaneous current flowing through the LED can

be three times as high as the normal continuous current. The PDM modu-

lation adds to this advantage. At a logic zero, it is has a duty cycle of 50%

and 25% when a logic one is transmitted. Consequently, the current trough

the LED can be six to twelve times higher than the nominal current. As a

result of this higher current, the LED will flash very brightly, and will be

able to control a device at a reasonable distance.

Figure 23 NEC transmission code

To begin the command, a synchronisation pulse is transmitted. In the fig-

ure above this is called the ‘leader code’. This leader code is used to give

the receiving device some time to synchronise and be ready to receive the

11

 Least significant bit
12

 Pulse Distance Modulation

Custom domotics system for use in an auditorium

29

commands. The leader code has a specific timing: there is a 9ms pulse and

a 4,5ms low time.

After the leader code, the two data bytes are transmitted. As mentioned be-

fore, the LSB of every byte is sent first. These two address bytes are the

addresses specific for a device, device series and manufacturer. When the

receiving device doesn’t receive the correct address, it ignores the rest of

the command, resulting in the signal only controlling the intended device.

The third byte which is transmitted, is the actual command given to the

device. The fourth byte in is the inverse of the command byte (i.e. 0x00

becomes 0xFF).

To conclude the transmission, a final stop bit is transmitted at the end. The

stop bit consists of a logic one or zero. The high-time of the pulse is the

same in both logic values, and so is the important part of the stop bit.

The stop bit is used to determine the value of the last bit of the inverted

command. By sending the command and the inverted command, a form of

fault detection is present. If the values don’t match up, the device won’t

react to the command.

Finally, if a key is held down on the remote-control, it does not resend the

complete code. Instead, a pause of 40ms is inserted. After this pause the

leader code is resent: 9ms high and 4,5ms low, followed by a logic one or

zero. Again, the value is not important because the length of the active

pulse is the same. After this a low waiting time is inserted until the com-

plete duration of the repeat command is 108ms. If the button is still held

down, this repeat command is repeated.

4.5.2 Commands

To obtain the addresses and commands for the infrared instructions, an in-

frared sensor was used. This sensor was hooked up to a memory scope

which was used to reverse engineer the data sent by the remote.

After analysing several commands per remote, the right remote library can

be chosen from the site of winLirc
13

.

These commands will be transmitted together with the address and timing

from the touchscreen to the microcontroller, using the serial protocol. The

firmware of the microcontroller will analyse all timings it receives, and

transmit the correct command to the device.

13

 An open-source program to control infrared controllable equipment via the computer with an adapter.

Its website contains many libraries for specific devices, detailing their infrared commands.

Custom domotics system for use in an auditorium

30

5 SOFTWARE DEVELOPMENT

Of course, when a programmable microcontroller is used to create the de-

sired functionality, a program has to be written for it in order to implement

that functionality. That type of program is called firmware, and the trans-

lation of human-readable to machine-readable code requires a special

compiler, depending on the manufacturer and type of microcontroller.

Since we have used a PIC 8-bit series microcontroller from manufacturer

Microchip, the firmware has to be written in, and compiled by, a compati-

ble IDE
14

.

Together with the firmware for the microcontroller, there is also another

piece of software which has to be developed: the user interface. Seeing

that the touchscreen computers available for our project run Windows XP,

the GUI
15

 needs to be developed for that platform. This requires again an-

other compiler, and a completely different set of software tools.

Furthermore, a protocol definition has to be made up to specify the com-

munications between the touchscreen computer, aka the master, and the

relay modules, aka the slaves, on the bus. Since the protocol defines how

the software is made up, we started by creating the protocol definition.

5.1 Custom communications protocol

To start drawing up our protocol, we have taken some time to analyse dif-

ferent possibilities, to gather information about the components that we

have chosen, and some special characteristics of the used communications

bus.

Firstly, we had already decided on the use of an RS232-compatible serial

bus for the electrical signalling part of the specification. RS232 is an in-

dustry standard, bidirectional, asynchronous bus. This means that data can

be sent in both directions at the same time, and that the devices communi-

cating with each other do not need a third signal as a clock reference.

Another advantage of RS232 is that it has proven to be a reliable standard

in industry environments, up to cable lengths of several hundreds of me-

ters, or, more specifically, a cable impedance of 2500 pF total. The cable

used in the auditoria is stranded, twisted and shielded, so with regards to

the length and capacitance, it should pose absolutely no problem to use the

RS232 standard.

Concerning the other specified parameters of RS232, we shouldn’t think

too much about them. On the computer side, everything is already imple-

mented up to standard. On the relay card side, we use a MAX232 trans-

ceiver chip, which takes care of the voltage translation and the generation

of the required voltages for us. So the specified -5..-15 and +5..+15 levels

14

 IDE: Integrated Development Environment, the whole of software programs to develop a piece of

software
15

 GUI: Graphical User Interface

Custom domotics system for use in an auditorium

31

are internally generated by that chip through the use of external voltage

doubler capacitors, and on the other side we receive and transmit a TTL-

level (0V for a logical zero, and +5V for a logical one) serial signal.

A standard speed to communicate with such a serial interface is 19200

baud with eight databits per frame, which is what we have implemented in

our protocol. Because we planned on adding error correction, we did not

need the parity check supplied by the specification, and so did not use it.

Finally, with the practicalities out of the way, we could start designing the

protocol definition.

5.1.1 First version

The final protocol was designed after the implementation of a first version,

which was later deemed not flexible enough. However, for completeness,

we have decided to also include the first version of our protocol in this

document.

The first version was targeted specifically at the relay cards, and was as

such only suited for that particular purpose.

Figure 24 Protocol definition of the first version

The address byte is the first byte to be sent, so that the relay cards can pass

through the message immediately without having to wait for a completed

message to begin retransmission. The address itself is zero-based, and is

matched by the relay card to its switches’ settings. So if the address

switches are set to binary 22, you should address card 22. Seeing that the

cards only have five switches, a maximum of 64 cards can be addressed on

the same bus.

Custom domotics system for use in an auditorium

32

The second byte is the relay byte, with which the relay that needs to be

addressed is specified. The relay addresses are also zero-based, so the first

relay is addressed as relay zero, and the last one as relay seven.

The command byte consists of some check bits, and three command bits.

The check bits are always ‘01010’, and can be used to detect timing incon-

sistencies or continuous faults. This is a very basic error checking mecha-

nism, and is, in hindsight, not very reliable.

The MSB
16

 is used to indicate either the state of the relay that that should

be applied, or the actual state of the relay, depending on the direction of

communication. If the PC sends a command with bit 6 set, the MSB con-

tains the value that needs to be set. If bit 6 is off, the PC is requesting the

relay’s status, and then the MSB is a don’t care-bit in the direction of PC

to relay card.

In the other direction, if the PC has set a status, the relay card returns ex-

actly the same 3 bytes to the PC, but uses bit 5 of the last byte to indicate

whether it has successfully processed the command (bit 5 is on), or that

there is something wrong with it so that it can’t be executed (bit 5 is off).

In the event that bit 6 was off, and thus a status has been requested, the re-

lay card puts the actual value of the requested relay in bit 7 of the last

byte.

5.1.2 Final version

When it became clear that the relay cards would also be capable of driving

extension cards containing, in our implementation but not limited to, vol-

ume controllers and digital I/O ports, a new protocol had to be defined. As

long as we’d stick with driving relays, the old protocol would do just fine,

but for the extensions we certainly needed some more command possibili-

ties.

The first step in accomplishing this was to split up the command and

checksum. With a full byte dedicated to the command, we can now define

up to 256 possible commands, which makes for great versatility, and easy

expandability when other extension cards are to be designed.

The separated checksum does also come in handy, because we can now

implement a full content-based checksum instead of relying on a prede-

fined bit pattern. One error checking mechanism that was thought of was

CRC-32, but as it turned out, it was too elaborate to check the checksum in

the firmware without losing performance, or mangling subsequent bytes

sent through the serial pipeline. In the end, a bitwise exclusive OR (XOR)

function was chosen as a rudimentary but effective error checker.

The major advantage of a XOR function is that it takes just one clock cy-

cle in the microcontroller to execute, and as such it takes virtually no time

to check the integrity of the data sent through the pipeline.

16

 MSB: Most Significant Bit

Custom domotics system for use in an auditorium

33

Seeing that we now have the possibility to command external features on

the relay card, and not only relays, the relay byte from the previous proto-

col was repurposed as value byte. Each command can have a value at-

tached to it, which can be the number of the relay that needs to be set, or

the volume level that is requested, or something else entirely. So, this way,

we stop wasting half a byte of zeroes, because in the previous specifica-

tion the relay number was always between zero and seven, which meant

that the five most significant bits of that byte would always have been ze-

ro.

Lastly, we need a specifier to indicate whether the message is travelling

from PC to relay card, or from relay card to PC. This is important in the

event that something else than relay cards would be attached on the same

bus, for example IR transmitters. For now, however, this specifier is a pre-

defined ASCII character of ‘&’ for a command to a relay card, and ‘?’ for

a response from the relay card.

Figure 25 Protocol definition of the final version

A visualisation of the finalised protocol can be seen in the figure above,

which might clarify things a bit further. A list of commands that are de-

fined up until now has also been included hereunder. As you can see, there

is still a lot of room left for extra expansion commands in the range of

0x30 to 0xFD. 0xFF is reserved.

Custom domotics system for use in an auditorium

34

Command function value byte Direction

0x01 Set relay relay number to be set To card

0x02 Reset relay relay number to be reset To card

0x03 push to relays byte which indicates all statusses To card

0x04 request status (broadcast) relay number that is requested To card

0x04 request status (broadcast) number of the requested relay * 8 From card

+ 1 or 0 depending on it's status

0x05 request full status don't care To card

0x05 request full status byte which indicates all statusses From card

0x06 request status (reply) relay number that is requested To card

0x06 request status (reply) number of the requested relay * 8 From card

+ 1 or 0 depending on it's status

0x10 set volume level 1 volume level (between 0 and 64) To card

0x11 set volume level 2 volume level (between 0 and 64) To card

0x12 request volume level 1 don't care To card

0x12 request volume level 1 volume level (between 0 and 64) From card

0x13 request volume level 2 don't care To card

0x13 request volume level 2 volume level (between 0 and 64) From card

0x1F Error: volume unavailable in response to 0x12 or 0x13 From card

instead of normal response

0x20 set I/O port number of output to be set To card

0x21 reset I/O port number of output to be reset To card

0x22 set all I/O port value port value byte To card

0x23 request I/O port status number of output requested To card

0x23 request I/O port status number of requested output * 8 From card

+ 1 or 0 depending on status

0x24 request all statusses don't care To card

0x24 request all statusses port value byte From card

0x2F Error: port unavailable in response to 0x23 or 0x24 From card

instead of normal response

Relays

Volume Expansion

I/O port expander

Figure 26 List of possible commands

Custom domotics system for use in an auditorium

35

5.2 Designing the relay card firmware

The first piece of software that has been developed is the firmware for the

relay card’s microprocessor. This has been very much a work in progress,

since it had to be changed with every change in the protocol, and with eve-

ry extra extension card that was designed.

5.2.1 Choosing a programming language

In the world of programmable electronics, there are literally dozens of ca-

pable programming languages available. Which one to choose greatly de-

pends on the manufacturer and microarchitecture of the used processor,

the cost to efficiency ratio of the compiler and accompanying IDE, and ul-

timately on the experience of the programmer.

For the microcontroller used in our project, from the PIC 8-bit family,

there exist a couple of options. Firstly, the native language of the proces-

sor: assembly. When you write your program in assembly, it means that

you write direct instructions for the processor. This has several ad-

vantages:

 The programmer controls exactly what the processor will do

 The written code is virtually free of the usual overhead of commercial

compiler suites

 There is no need to spend money on a commercial compiler

Of course, there are also disadvantages, with the major one being that

writing assembly is incredibly tedious and time-consuming, and that you

can quickly forget about the bigger picture and start focussing on small de-

tails. And then there is also instruction set familiarity: it takes a great deal

of time for a programmer to learn a new instruction set up to a level where

assembly programming becomes comfortable. Obviously, the less instruc-

tions, the easier to learn, but also the more code that has to be written due

to the absence of combined instructions. Programming in assembly is also

referenced to as hardware-level programming.

One level up the programming abstraction ladder comprises the so-called

intermediate programming languages, such as the one we will ultimately

end up using. The advantage here is that the programmer does no longer

need an in-depth knowledge of the microarchitecture and the instruction

set. Instead, the code is written in methods and statements, which are then

programmatically compiled into assembly, and ultimately into machine

code.

The probably best known programming language in this category is C.

While there is a great deal of variants of this language, it has been stand-

ardized by the American National Standards Institute (ANSI), with its last

major revision completed in 2000, and a new one currently in the works.

Since both authors are relatively versed in C, we decided on using this

language.

Custom domotics system for use in an auditorium

36

With the specific language to use decided upon, there still remains the

question of which compiler to use. Specific compilers for the Microchip

PIC architecture include Microchip’s own HI-Tech C compiler with a trial

version lacking code optimization, BoostC, MikroC, and so many more.

The advantage of using Microchip’s compiler is that you can work directly

in their own IDE called MPLAB, so you can use all the new parts directly

as they are released.

However, since the programmer of the firmware had not yet used

MPLAB, and was familiar with the IDE of MikroC with which he had

worked before (MikroC also exists for the Atmel AVR-series of microcon-

trollers), this particular compiler/IDE combination was chosen.

Figure 27 Sample view of the MikroC IDE

Although the MikroC compiler has a few quirks of its own, it still gener-

ates relatively compact and efficient code. For example, in standard C

programming language, you have to ‘include’ the libraries you wish to use

in your program. In MikroC, you have to tick the boxes of the libraries

you want to compile in the IDE. It works, but makes for less portable

source code if you would want to compile it for another architecture.

5.2.2 Implementation of the relay card firmware

With the compiler and development environment now decided upon, we

could start the development process of the firmware. For obvious reasons,

we will not explain the code line for line in this document, but rather give

Custom domotics system for use in an auditorium

37

a general overview of how the program is built up. For a more in-depth

view on the firmware’s source code, we refer to the accompanying CD,

which includes all source files. The full code is documented in-line.

Figure 28 Flowchart of the basic relay card operation

The above flowchart should be fairly self-explanatory. On power-up, the

card resets all relays to their ‘off’ position. It then starts its communication

ports, being the two serial ports and the internal I
2
C bus for communica-

tion with the possible extension cards.

On initialisation of the I²C bus, the card also polls all known addresses for

a response, in order to detect whether any peripherals are attached. This

only happens at the power-up stage, so hot-swapping of extension cards is

not possible. Every time you want to change extension cards, you need to

power cycle the circuit.

Once everything is initialized, the program enters an infinite loop, in

which it checks the switches to determine its address, and it reads the in-

coming data on both serial ports should any data be available. If the re-

ceived character corresponds with a direction indicator, it starts filling its

reception buffer for that port, until the necessary amount of bytes (five

Custom domotics system for use in an auditorium

38

bytes for this protocol) is received. Once that is done, it checks the check-

sum byte, and if the checksum matches, the command is interpreted.

During the interpretation, the program checks whether the command is for

a relay card (direction byte ‘command to relay card’) and whether the ad-

dress of the command matches the position of the address switches. If any

of those conditions are not met, it retransmits the full command on the

other serial port, in order to get the message through to the other slaves. If

both conditions match, the command and value bytes are interpreted, and

the appropriate action is taken. If any response is necessary, it will also be

sent straightaway, and normal program flow is interrupted until the re-

sponse has been sent.

Figure 29 Flowchart of command interpretation

5.3 Designing the keypad controller firmware

When we started thinking about the light button-panel problem in audito-

rium A, it became quite clear that it needed a rather special solution. After

all, the lights needed to be able to be controlled by both that keypad and

the touchscreen computer.

After a while of investigating, we found the source of the problem with the

keypad: the dedicated light controller had broken down beyond repair.

Since that specific model had been taken out of production a very long

time ago, there was really only one solution: replace the logic within the

keypad with an interface of our own.

The keypad, however, is normally connected to the Helvar system on a

two-wire bus which supplies both power and bidirectional data. In order to

integrate the keypad in our system, we needed to hook it up into our serial

bus, which uses three wires to communicate. More specifically, two wires

Custom domotics system for use in an auditorium

39

for bidirectional data, and a common voltage reference. So, how would we

make that work?

The solution turned out to be surprisingly simple: the cable that had been

used by the lighting system before was actually a three wire mains cable.

That meant that we had enough conductors for communication. The only

thing left was to supply power (+5V DC) locally using a small adapter.

After the practicalities, the firmware had to be designed. Since the serial

protocol was already defined, it was only a question of reading the button

inputs, and displaying the current status of the relays on the LED’s. The

LED’s also proved to be an effective way to have a local cache of the light

relays’ status, so that it doesn’t have to be stored somewhere else in the

program.

The basic program flow is as follows: if the keypad is powered on, the mi-

crocontroller initialises all its inputs and outputs, and initialises its serial

communications port. It then begins asking for the light statuses, one at a

time. If a response is received, the status of the next relay is requested by

the keypad, which then again waits for a response before sending the next

request. After all the requests have been answered, the buttons are ena-

bled, and the user can begin using them as light switches.

This program flow implementation has one major drawback: if one of the

eight address/relay combinations is unreachable during start-up, the pro-

gram flow will be interrupted, blocking the key presses from registering

and sending out their respective commands. If this happens, and all the po-

sitions are actually available, a power cycle of the keypad should suffice.

If one of the addresses is unavailable, then there is no easy solution apart

from making it available on the bus.

The solution to this would be to not require an update of all corresponding

lights on start-up, but then the status displayed on the LED’s would be in-

correct on power-up, until each button is pressed at least once.

The address and relay combinations that correspond with a specific button

are stored in program memory, as a two-dimensional array. This means

that the keypad has to be reprogrammed manually every time a light

moves from one relay contact to another. Luckily, this shouldn’t have to

happen for a long time, and if it were to happen, the source code is sup-

plied.

There was another problem with the addition of the keypad at one end of

the serial bus, with the computer at the other end. If one of those switches

a light, how will the other one notice? Requesting all the lights’ statuses,

one at a time, every few seconds would constitute a tremendous amount of

overhead on our bus, slowing down other bus operations.

For this reason, command 0x04 was introduced. This command is just like

a regular 0x06 ‘get status’ command, but instead of returning its response

on the serial port that it received the request on, it actually returns a re-

Custom domotics system for use in an auditorium

40

sponse on both ports. That way, the message will reach both the keypad

and the computer, if they are powered on. Therefore, the command has

been nicknamed ‘broadcast status’.

This command requires some special handling though, as it can be re-

ceived unsolicited, which means that even if the master has not requested

a status, it can still receive a response. Luckily for us, this special handling

in the keypad’s firmware is limited to always listening on the serial port.

The program is very simple, so it should have ample processing time left

to be able to do that.

Figure 30 Flowchart of the keypad operation

Custom domotics system for use in an auditorium

41

5.4 Development of the PC software

The firmware for the microcontrollers, of course, is only part of the big so-

lution. Since the whole project is meant to be as user-friendly as possible,

a touchscreen computer running Windows XP was made available as a

central command unit.

Seeing that the computer is running Windows, the user interaction soft-

ware would have to be programmed in a language that can be compiled in-

to an attractive-looking, intuitively working program that can be con-

trolled with just a touch. The graphical design of the solution plays a big

part in that, but if the used language doesn’t support the use of a custom

graphical user interface, then the project is doomed from the start.

However, the GUI is the culmination of the project. Before starting work

on the finishing touches and small cosmetic errors, the core logic of the

program should be working correctly and up to specification. This would

prove to take up the majority of the time spent on the project.

5.4.1 Choosing a programming language and IDE

As with the firmware, a suitable programming language and IDE will also

have to be chosen. This choice is particularly difficult, because of the

many possible software platforms available for Windows.

For starters, there are the normal Win32 API’s
 17

 with which your program

can directly access Windows’ resources. While this is a way to create very

speedy code, it is not unlike coding in assembly for a microcontroller: it

takes a lot of time to learn, a lot of time to get the code just right, and a

huge amount of code because the programmer has to take care of literally

everything. Plus, if there’s some overlooked little bug in the code, it can

very quickly lead to a BSOD
18

 crash. Those bugs can be very hard to track

down, and might not even appear until sometime after the program has

been put into service.

On a higher level of abstraction, there are all the languages that need a

runtime of some sorts. A runtime is a native program (in the case of Win-

dows: written for Win32) that runs your higher level code of that lan-

guage, and translates it into native code in real time, while the program is

running. The advantage is that, if the runtime is available for multiple plat-

forms, your code is compatible with all of those. For example, if a runtime

of a specific language exists for Windows, Mac OS and Linux, your pro-

gram can run on any of those without modification or platform-specific

code. Well, in some cases you might want to introduce some platform de-

pendency, but that goes beyond the scope of this project.

17

 Application Programming Interface
18

 BSOD: Blue Screen Of Death, a colloquial name signifying a critical system failure with an immediate

restart, due to its appearance on Windows as a blue screen with white letters, containing information

about the crash.

Custom domotics system for use in an auditorium

42

A language of this kind, which is commonly used in the academic world,

is Java. Java, originally created at Sun Microsystems, is an object-oriented

language with a big amount of runtimes available. For example: Windows,

Mac OS, all flavours of Linux, Solaris, etc. all have a Java interpreter

available. Even Android, the mobile operating system from Google, runs a

Java-like interpreter under the hood.

While Java might sound like the ultimate solution, there are a few disad-

vantages. Firstly, because the code must be able to be interpreted on all

those platforms, it doesn’t run too well on any of them. There still is an as-

sociated speed penalty when programming in Java.

Secondly, and more important, the graphical features of Java are not that

extensive without an add-on library, which then of course brings along an-

other speed penalty. Other than that, those extra libraries are often not so

easy to use and mainly geared towards the academic audience.

Another JIT
19

 interpreter, and fairly new, is Qt
20

. This is a framework with

good graphical features, created as an open-source alternative to the other

major players. Given that it was created by Nokia, its main use lies of

course within the smartphone industry, but it has nevertheless also found

its way to the desktop, with runtimes being available for the three major

desktop platforms. It became famous for being the go-to language for

Nokia’s mobile OS’s, first Symbian, then Meego/Maemo.

However, since it is a relatively new language, there is not that much in-

formation readily available, and it can be difficult to find an answer should

you run into any kind of problem while programming in Qt. It is also not

commonly taught in a classroom environment, so it would be difficult to

find a student to follow up on this project without a fairly steep learning

curve being necessary.

The alternative that we have chosen to use in this project, is Microsoft’s

own JIT runtime called .NET. The disadvantage is that the runtime only

works on a Windows operating system, thereby de facto ruling out the use

of another operating system on our touchscreen PC’s. The advantages,

however, outweigh by far this disadvantage:

 One can program in different languages targeting the same .NET func-

tions: Visual C#, Visual Basic, F#, etc.

 The integrated development environment, Visual Studio, is top-notch,

and an industry standard. Its use is free in an academic environment
21

.

 By only being available on Windows, its routines are speed-optimized

for this operating system, and no platform-specific code is necessary.

 Access to the serial communications port is quick and easy. Seeing

that all of our equipment is controlled through serial communication

links, it is a big advantage.

19

 JIT: Just In Time, referencing the fact that the code is translated to ‘native’ code as and when it is need-

ed.
20

 Pronounce: ‘cute’.
21

 Please see http://www.dreamspark.com for details.

http://www.dreamspark.com/

Custom domotics system for use in an auditorium

43

 There are extensive graphical frameworks available. The most com-

monly known is WinForms, which is a drag-and-drop way of creating

a user interface. That interface then integrates with the main program.

WinForms has already been around since the time of Windows 95,

and is thus a mature framework. Its successors, Silverlight (for web

and desktop) and WPF (especially for a desktop environment) provide

more integrated eye-candy, and a development process that separates

the design from the code, which is handy if you want to introduce

multiple custom UI elements dynamically, like we are planning to do.

Based on these factors, we have chosen WPF on the .NET framework for

the development of our end-user graphical interface. The communications

libraries, as seen later on, can first be developed and tested within a simple

and small (KISS
22

) WinForms program to verify their functionality. This

is also a strong point of the .NET system: a library written for one of the

frameworks can be reused in another without much further work being

necessary.

5.4.2 PC-side protocol verification

The very first tangible piece of interaction software that has been written,

was a small front-end for our custom serial bus. It was created for the sole

purpose of checking whether the protocol we made up was working, so it

has a rather ugly layout. But since its prime purpose is to be useful, it suf-

ficed.

Figure 31 First version of the checking software

This is an example of the first version that was created. Debugging pri-

marily took place within Visual Studio through the use of breakpoints and

local variable inspectors, and the layout has been created by simply drag-

ging and dropping the various elements into place, and tightly coupling

them to underlying library calls.

22

 KISS: Keep It Simple and Stupid

Custom domotics system for use in an auditorium

44

Of course, while this was all working on the development computer, we

needed to also verify its functionality on the actual target computer. For

this project, that was the touchscreen PC. Because of its limits, however, it

couldn’t run Visual Studio satisfactorily, so an additional level of infor-

mation about the bus events had to be implemented. That was why,

throughout the weeks that it took to fully develop the final protocol speci-

fication, the testing program was updated to include several more features,

which were mainly targeted at debugging. If an error occurred, it also gave

a lot more information in the corresponding message.

Figure 32 Testing program in its final stages

This program proved to be very useful in checking the various pitfalls of

our custom protocol, as well as helpful in deducing errors later on, when

the actual user interface would cope with errors in a silent fashion.

In later versions, extra elements were added to verify the volume function-

ality of the extension cards, and the internal timeout mechanism, so that

the bus does not block when a single response is not received. This is par-

ticularly useful to know when the cabling is being tested, so you can test

whether the link is actually 100% reliable or not.

Now, this is the exterior look of the sample program, but what about the

inner functionality? How do things work underneath the layers of user in-

teraction methodology?

Custom domotics system for use in an auditorium

45

In order to fully understand the working of the communications library, a

concept of every RTOS
23

 must be explained: threading.

5.4.3 Understanding the concept of threading

Threading is a concept which, for the Microsoft line of operating systems,

was first introduced in Windows 95 and NT. It is best explained using a

small example:

Say you have to write a thesis, and use Microsoft Word to do so. If you

open up Word, you start an application process. That process can then run

on a single thread, or multiple if necessary. If it were to run on a single

thread, you would have to wait each time you interact with the program

until all results from that interaction had been calculated and executed be-

fore there would be another interaction possible.

For example, say you have already finished part of your thesis, and want

to print a hard copy of your partly finished work. You would then go to

the print dialog, and execute the print command. Of course, you are hard

pressed with your deadline, and so start to continue writing while the

printer is still busy.

At that moment, there are two active threads: the one that is printing, and

the one that is converting your keyboard input to written text, properly

formatted on the screen. So, threading increases the productivity and re-

sponsiveness of the system.

 If the concept of threading had not been implemented, you would have to

wait for the printer to finish printing, before being able to do anything

else. That behaviour was normal in the pre-threading days of MS-DOS

and Windows 3.1.

This principle works on both single and multicore processors. The operat-

ing system takes care of all threads, and gives each in turn some pro-

cessing time on the processor should they need it. A thread that is waiting

for something, only needs to check once in a while whether that action has

already happened, which takes virtually no processing time. A thread that

is important can also be assigned a higher priority, so it would get a bigger

slice of the available processing time in each cycle.

Of course, as with most things in life, not all is well that seems well. The

concept itself is essential for most, if not all, of the modern programs that

need their user interface to be responsive while performing intensive or

long tasks. But, there is a problem: if two threads try to access the same

resource at the same time, a conflict can occur.

To continue our example: suppose that the printing command actually ed-

its a part of your text after it has finished printing, but at that exact same

23

 RTOS: Real-Time Operating System, i.e. Windows, Mac OS, Linux, Android, etc. Not an RTOS: DOS.

Custom domotics system for use in an auditorium

46

moment, you are editing the same part. What would be the outcome?

Which thread would take precedence and edit the text?

In fact: none. The application will crash due to being not ‘thread-safe’, a

safeguard of the operating system. If the operations would go through,

there would actually be a chance of a kernel error, which would then bring

down the whole operating system instead of just your application.

What does that signify for our application? It means that we should keep

in mind that, due to the asynchronous nature of the serial bus, every call

should be thread safe.

For the .NET framework, the serial port control handles its write and read

operations on separate threads: if you want to send a byte, it is done on the

thread that requested it. However, when a byte is received, the system cre-

ates a new thread to notify the program that a response has been received.

The code, which then responds to that notification, must first wait for

permission to access the common variables, before doing an operation on

them, just in case a write and read operation were to be initiated simulta-

neously.

In addition, all functions that get called because of that notification will al-

so be executed on the new thread. That results in a responsibility for the

designer of the UI, because he, too, has to make his code thread-safe while

handling responses coming from the communications library.

5.4.4 Our own protocol library: putting it all together

With the concept of threading explained, the setup of the protocol library

should be clear. If a UI component wants to interact with the bus, it exe-

cutes a method on the handler object, passing all necessary values. At the

bare minimum, an address is needed, but for some functions, you would

also need to pass a relay address, a volume, a relay value, a port value, etc.

These are all documented in the respective code segments, and all varia-

bles are named after their actual function. This is important because of the

IntelliSense function of Visual Studio: when you are typing your code, and

it recognizes that you want to access a method, it displays a small popup

with the required variables, and their names.

Figure 33 Example IntelliSense popup

Custom domotics system for use in an auditorium

47

When a method is called, the library will check whether there is currently

an action going on. An action can mean three things: there is a queue of

commands waiting to be executed, there is a timer running before the next

command can be sent, or there is a timer running because the previous

command is waiting for a response. If there is nothing going on, the com-

mand is sent on the serial bus with the proper encoding, and a timer is

started to either give the bus a chance to execute the command before

sending the next one, or to give the addressed card the time to respond.

Default times are 110ms between commands, and maximum 200ms to re-

ceive a response.

Figure 34 Flowchart of PC-side protocol handling

If the bus is busy, the command is added to the command queue to be sent

when all the other waiting commands have been executed. If something is

not right, for example the serial port has not been initialized, the method

will return an error value.

Custom domotics system for use in an auditorium

48

As stated before, when the opened serial port receives a byte, it creates a

new thread which calls the event handler of the library. This handler does

basically the same thing as the receive routine of the firmware: it buffers

the incoming data until it detects a command, and decodes the command.

That is when things get interesting, though.

Due to the threading mechanism, the event handler first has to wait until it

is granted access to the shared variables, like the command queue. This

happens with an accessor object called a Mutex. This Mutex is passed

around by the threads: a thread that needs access, requests it by calling a

function on the Mutex, which blocks the thread until access is granted.

Once the operation has completed, the thread has to call the release func-

tion of that same Mutex, so that access can be granted to the next thread

requesting it. This guarantees that no two threads can access the protected

resources at the same time, and thus generate an application crash.

So, when the receiving thread has been granted permission to access the

necessary objects, it decodes the object, and raises an event that notifies

the subscribed objects that a response is received, along with the contents

of that response. Basically, every subscribed object is at this point able to

execute some code to check if the response is important to them, and act

on it.

After all the objects have been notified, the command that has been exe-

cuted is deleted from the command queue, and if there is a next one, the

next one gets executed, and the appropriate timer is started. And so the cy-

cle renews itself.

Custom domotics system for use in an auditorium

49

Figure 35 List of methods available on the bus accessing library

At this point, the functions for relay getting and setting, volume getting

and setting, and I/O expander interaction are available in the library. Ex-

tensions can easily be made, because internally, the class uses a function

called ‘SendCommand’ that takes a ‘RelayMessage’ as parameter. That

RelayMessage object can be filled with custom data beforehand: the ad-

dress byte, command byte and value byte need to be set, and the Boolean

‘get’ needs to be set to true if a response is to be expected, so that the right

timer can be started.

As seen in the class diagram in Figure 35, there are four events that can be

raised:

 The Debug event returns a text string with a debugging message as

sender. This event can be subscribed to by the main program, in order

to capture and display all relevant debugging data.

 The RequestReceived event is raised whenever a request has been re-

ceived on the bus. This functionality, in combination with the ‘re-

spond’ method, has been included at the time that the PC program was

used to emulate a ‘virtual’ relay card, and thus had to respond to in-

Custom domotics system for use in an auditorium

50

coming requests. Under normal operating conditions, however, it

should not be used, and can be regarded as deprecated functionality.

 The ResponseReceived event is raised every time a valid response has

been received, and returns a RelayMessage object with the correct da-

ta as a sender. Every object that holds a reference to the RelayHandler

instance can subscribe to this event in order to be able to listen for a

response that concerns the object.

 The TimeOutEvent is raised whenever a response was expected, but

not received within an appropriate timeframe (default 200ms).

Custom domotics system for use in an auditorium

51

5.5 Designing an intuitive user interface

With our core functional library completed, we could begin to focus on the

creation of an attractive visual interface to display on the touchscreens.

Since neither of us is a graphical designer, we had to think carefully, and

have a few brainstorm sessions to come to a conclusion.

We ultimately decided that we would embrace a new graphical ‘language’

called Metro, instead of the more traditional layouts of text-filled buttons,

frames and screens to switch to. The main reason for this choice is because

of the effectiveness of the message: with Metro, it should be clear instant-

ly where you have to press in order to access a specific function.

5.5.1 The Metro language

So, where does this so-called Metro language come from? For starters, it

has been developed by Microsoft, and first used hesitantly in the operating

system of their series of MP3-players. When they noticed that it gained

traction with the wide audience, it was further perfected and implemented

in their mobile OS revamp, Windows Phone 7, and is due to be imple-

mented in the next version of Windows: Windows 8.

The inspiration for Metro stems from the clear signage at public locations:

airports, train and metro/subway (hence the name) stations, parking lots,

etcetera. These signs have been developed to guide the people as efficient-

ly as possible to their right destination, and they do so through the use of

icons where possible.

Should an extra guiding text be necessary, it is written in a clear, singular

typeface, reducing the clutter on the signs. You will not find Comic Sans

on a sign! The typeface used for Microsoft’s implementation of Metro, is

Segoe UI.

Figure 36 Inspiration for the Metro design language

Custom domotics system for use in an auditorium

52

One of the main eye-catchers of the Metro language interpretation is the

use of square blocks called ‘tiles’. These are filled with either a couple of

words of text, or an icon and a small title, and are arranged in a tight grid.

Figure 37 Metro tiles on a home screen

Another aspect is simplicity: There is one, and only one, contrasting col-

our used throughout the application. The background can be set to either

light or dark, depending on the needs of the user and the circumstances,

for example ambient light. When this happens, all UI black-and-white col-

ours invert, to keep the text legible, but the one contrasting colour re-

mains.

A final principle is called ‘Content, not chrome’, which is an extension of

the ‘fierce reduction’ principle. It means that the application should place

its content in the spotlight in a clear and prominent fashion, and reduce the

impact of other visual elements to a minimum, or hide them altogether.

Figure 38 Difference between Glass (top) and Metro (bottom) icons

Custom domotics system for use in an auditorium

53

5.5.2 First sketches

But, how would we design our own application? We decided to go for a

grid layout to further optimize the conveying of information and the fluid-

ness and ‘belong together’ trait of the UI. This means that every object on-

screen is rendered in proportion to its encapsulating or neighbouring ele-

ments.

We also decided not to have multiple screens which the user should navi-

gate between by using forward buttons and back buttons. Instead, there

would be a tabbed control to select either the main interface or the detailed

control elements, and so switch between the front end and back end of the

application.

Furthermore, a quick access bar to the right of the screen should give ac-

cess to the most quickly needed functions: turn the lights on/off, and ad-

just the volume, in case the audio source is outputting a high volume.

A permanent bar under the screen should hold the tiles pertaining to the

program itself, and not the functionality: exit, debug, and language selec-

tion features.

Figure 39 Sketch of the base view layout

The main view area can be filled with tiles, each holding a particular pre-

set to put the room directly in the desired condition. The quick access bar

is filled with chromeless buttons, because it would have been a waste of

space to fill it with the same tiles as the main screen.

Custom domotics system for use in an auditorium

54

As for the tile, it consists of a uniform background color, an icon in either

black or white depending on the background, and some small text title to

clarify the icon a bit more.

Figure 40 Tile and chromeless button sketches

As for the main field, on start-up, it is designed to hold three rows of tiles,

either 1 or 2 units wide, for preset selection. As can be seen, it is shaped in

a grid, to enhance the visual ‘flow’.

Figure 41 Organizing tiles on the main screen

Custom domotics system for use in an auditorium

55

5.6 Creating reusable components

One of the main advantages of using WPF as a graphical framework is

that UI elements can be regarded as small, stand-alone programs with their

own graphical layout and interaction logic, therefore eliminating much of

the interaction logic otherwise cluttering up the main program.

The UI object is, for the visual part, designed using a mark-up language

called XAML
24

. This language is similar to XML
25

, in that it uses the

same style of ‘tags’ to define a visual tree of base objects.

For example, to define a grid, one simply uses the <Grid> and </Grid>

tags, the former representing the start of the grid, and the latter the end of

it. Every other object that then is placed between those tags, is a visual

child of the grid object, and is thus enclosed in it.

It also provides a way to hard-code properties of the object within the

XAML file: for example, within the start tag <Grid>, you can define a

property that defines the background colour: you just use <Grid Back-

ground=’White’>. That way, all of the Grid’s properties can be set at

the time of design by the designer.

Figure 42 Example XAML file and its rendered design

24

 XAML: eXtensible Application Markup Language, pronounce ‘zammel’.
25

 XML: eXtensible Markup Language

Custom domotics system for use in an auditorium

56

The code part of the object is enclosed in a file called the ‘code-behind’.

This is a C# (or C++) file, with at least one method in it, named after the

control itself. This method gets executed on creation of the object. Of

course, you are free to write and add other methods to extend the function-

ality of the object.

Elements defined in the XAML, can be accessed from the code-behind ei-

ther by looping through all elements and selecting the one you need, or by

name. The property ‘x:Name’ of a XAML object defines a static name

with which your code-behind file can access it.

As becomes clear from this explanation, the XAML file is used for the

static layout of a UI element, while the code-behind is used to change pa-

rameters, views, or update the layout dynamically by changing properties

of the in the XAML defined objects. This way, a designer can create a

good-looking object without worrying about the interaction logic, and a

coder can code the interaction logic without having to worry about the de-

sign.

Another advantage over WinForms, is that you can easily design multiple

custom UI elements, and then have your main program instantiate possibly

multiple instances of them. Even though they are all coded the same, they

won’t conflict with each other. So, if you create a UI element with 2 but-

tons, called button1 and button2, this element can be presented multiple

times, without having to rename the buttons of the second element to pre-

vent naming conflicts. It is a good way to create reusable code.

5.6.1 Tile

The first UI control (in WPF, a custom UI control is called a ‘UserCon-

trol’) that was created, was the Tile. A tile, in fact, is just a normal button,

which is why we start with subclassing the Button object. Subclassing is

using another class as a base for your class, and then extending on it.

The normal button style, however, does obviously not fit our purposes.

Therefore, we make some changes to the default button style that only get

applied to our Tile object: We remove the border, create a squared layout,

add a property for the title and the icon, apply the contrast colour to the

background and the text colour to the foreground, etcetera. In the end, the

result looks like this:

Figure 43 Example custom styled Metro tile

Custom domotics system for use in an auditorium

57

5.6.2 Preset tile

Our custom tile now does what it should do, but for our preset tiles, we

need some more functionality. Seeing that the preset tiles should launch a

number of commands when clicked, we need the control to hold a list of

commands to be executed on the click.

Therefore, we create, again, a new class, subclassing our Tile object,

called CTile. We add a property Commands that holds a list of Auditori-

umCommand objects, which can be accessed by the program when the tile

is clicked.

Also, since we are dealing with a multilingual interface, a dictionary had

to be added that contains the translations of the tile’s title, and a property

to set the language. When the language is set from another portion of the

code, external to the CTile object, the CTile object should automatically

update the displayed title to the correct text for the set language. This is

done through the use of a principle called ‘data binding’.

Data binding is a very handy feature. You can bind a property in XAML

to a code-behind variable using the syntax {Binding Path=…} with the

name of the variable replacing the three dots. Then, when the variable is

updated in the code, the layout gets notified, and updates the view to dis-

play the new value of the variable. To make this happen, the code-behind

should raise the PropertyChanged event with the name of the variable that

has been changed, after its value has been changed, in order to notify the

layout of the change

Figure 44 Class diagram of the Preset tile.

Custom domotics system for use in an auditorium

58

5.6.3 Light control

The light control is used to control a single light, which is either on or off.

To do this, it uses two buttons, of which one at a time is enabled, depend-

ing on the status of the light. Obviously, if the light is on, the off button is

enabled, and vice-versa.

To check on the status of the lights, it needs to hold a reference to the ap-

propriate RelayHandler, so that it can request the right relay’s status. It al-

so needs to hold a variable with the address of the card and relay number

on which the light contact is situated.

As with all the controls, every piece of text should have an attached dic-

tionary to contain the translations, so that when the language is updated,

the proper text can be displayed.

On creation of the LightControl, it initially does nothing. However, when

the reference to the RelayHandler is updated, it subscribes to the Respons-

eReceived event of the new handler (because it can always receive an un-

solicited response when the light has been switched via the keypad), and

requests the status of the relay that is indicated by the user control’s ad-

dress and channel variables. When that request gets a response, the buttons

are updated to reflect this change.

Figure 45 A finished LightControl UI object

Figure 46 All of the lights in a room arranged in the program

Custom domotics system for use in an auditorium

59

5.6.4 Blinds control

Like the LightControl, the BlindsControl needs to hold a reference to the

appropriate RelayHandler, so that it can set the right relays and request

their status. It also needs to hold a dictionary for all translations.

The BlindsControl has three buttons: up, down and stop. When the blind is

going up or down, only the stop button can be used. Likewise, when the

blind is not in motion, only the up or down button can be used.

When a motion is started, a timer is initialized, and set to expire when the

maximum time of travel has elapsed. This is to protect the motor in the

event that the built-in limit switches should fail. When the timer elapses, it

resets the relay that had been set, so that the motion is stopped, and the

supply is cut off from the blind’s motors.

Figure 47 Finished BlindsControl

Except for control through the buttons, the BlindsControl also has a public

method, by which external coded objects can initiate a movement. This is

important, because the commands attached to preset tiles can include a

command to move the blinds. Those commands get interpreted by the

main program, which should then look up a reference to the right Blind-

sControl, and execute that method to have the blinds move to the desired

position.

As a safeguard, the BlindsControl also keeps the status of the blinds in

memory. For example, if the blind has just finished its full movement up-

wards, there will be no action when the ‘up’ button is clicked again, or

when the ‘up’ command is issued through the Move method.

Figure 48 Class diagram of the BlindsControl

Custom domotics system for use in an auditorium

60

5.6.5 Volume control

Like the two previous UserControls, the VolumeControl also needs to

hold a reference to the appropriate RelayHandler to be able to set and re-

quest the volume level of the given attenuator. For this, it needs the ad-

dress of the relay card on which the volume expansion card is installed,

and an indication whether it is coupled to the first or the second attenuator

on that expansion card. It also needs a dictionary to translate the name of

the volume control into the appropriate language as requested by the main

program.

Figure 49 Sample view of a VolumeControl

The volume can be controlled by dragging the slider over the track. It can

also be muted by using the mute button, which will then disable the slider.

Once the mute function is turned off again, the volume level will be re-

stored to its previous value, and the slider will be enabled again. The sta-

tus of the mute function is indicated by colouring the background of the

mute button with the contrast colour when the function is active.

In an effort to reduce the bus traffic, the volume not updated with every

value the slider passes as the user slides it over its track. Instead, the vol-

ume is only updated when the difference between the previous value and

the instantaneous value is bigger than 5 (out of 64 possible steps). When

the slider is released, the volume is then updated to the exact level where

the slider has been released.

Figure 50 Class diagram of the VolumeControl

The VolumeControl also contains methods to enable the main program to

issue commands to it, like increasing and decreasing the volume, setting it

to a specific level, and controlling the status of the mute function.

Custom domotics system for use in an auditorium

61

5.6.6 Switcher control

Because we had to deal with multiple types of switchers, there was a need

to create multiple Switcher controls. Because the A auditorium was tack-

led first, the controls pertaining to that one have been created.

Kramer 12-port double bus switch

This switch has two controllable busses, whereby one is used to switch the

audio, and one is used for the video. Because the audio and video switch-

ing controls will end up in different tabs in the main program, the serial

port interpreter and the user controls had to be separated from one another.

The serial protocol used for the Kramer switch regrettably doesn’t have a

function to request the currently selected input from the device, so that we

have to buffer this ourselves, and hope the command will be received by

the switch. This, however, makes the handler easy to write: it’s just a mat-

ter of sending the right two bytes to the switch. For full documentation on

the protocol, please consult the datasheet on the attached CD.

The user control for interaction consists of 12 buttons, each representing

an input on the switch, and each user control representing a bus. That

means that two user controls can be coupled to one protocol handler. At

this moment there is nothing that prevents more than two user controls be-

ing coupled to the same handler, but that situation would be non-critical,

just annoying.

Furthermore, the user control should hold a dictionary with the translation

of the in- and output names, because each input and output can be as-

signed a name, which is then displayed vertically in order to fit in the lay-

out. That, however, means care should be taken not to give too long a

name to an input, because the user control would then clip the name be-

cause of its maximum height.

When a button is pressed, the serial handler gets a command to have the

switch select the input corresponding to that button, on the output defined

by the variable in the user control. The pressed button’s background is

then coloured with the contrast colour to indicate that the command has

been sent, and that that input should now have been selected.

Figure 51 User control for a 12-input Kramer switch

Custom domotics system for use in an auditorium

62

Extron 4-port VGA switch

This switch has four VGA inputs, and one output. It is controlled through

a serial port, using a protocol designed by the manufacturer. For more de-

tails on this protocol, please review the protocol manual on the attached

CD.

Seeing that the Extron switch is not able to be operated on a bus, but only

by direct serial communication, the serial port handler has been built into

the user control. This means the computer needs an available serial port

for each Extron switcher. The serial port interfacing logic, being included

in the user control, means less source code files, and thus less clutter in the

programming environment.

An advantage of the Extron switch over the Kramer switch is that the Ex-

tron can return the currently selected input when it is requested. So, when

the user control is initialized, it requests the current status from the

switcher, and colours the background of the input button corresponding

with the actual selected input.

Another nice feature of this switch is that it automatically sends a message

to the PC when the inputs’ signal statuses change. So, we have added a

visual indicator to the user control that colours green when the signal on a

specific input is present and grey when there is no signal. This status mes-

sage is sent unsolicited, so the indicator’s colour will change the moment

the corresponding status changes.

Figure 52 User control for an Extron 4-port switch

5.6.7 Beamer control

The beamer user control is a special one, in that it is not reusable per se. It

is tailored to control one type of beamer only, but the general layout can

be recycled eventually for other types of beamers, albeit with another

code-behind file.

Custom domotics system for use in an auditorium

63

That said, the beamer user control which was developed first, was devel-

oped in function of the A auditorium, and so coded with the Eiki protocol

for the LC-X71 data projector.

At first sight, this should have been a straightforward exercise. A docu-

ment from Eiki exists (and is included on the attached CD) which details

all the protocol specifications and interactions. This meant that all that had

to be done was simply to send the right serial commands and update the

layout to reflect the status of the beamer.

However, after completing the interaction logic, the beamer would not re-

spond. Seeing that the serial port communications are handled within the

user control because there can be only one single projector attached to a

serial port, and that the user control already had a debug handler, we start-

ed examining both the input and output of the serial channel.

As it turns out, the projector does not comply with the specified protocol.

Sometimes it returns the right values, luckily, but other times it returns

nothing, or just plain bogus characters. Now, how are we to create a fluent

interface when the beamer will not even properly acknowledge a given

command reliably?

For example: if the program issues the ‘menu on’ command, the beamer

would respond with something like 0x16 0x25 0x36 0x32, which makes

absolutely no sense, instead of the 0x06 0x0A (ASCII
26

 for acknowledge,

linefeed) that it is supposed to return on successful reception of the com-

mand. We know, however, that the command was successfully received,

because the menu had been activated.

Because of this, the user control of the beamer has been redesigned to im-

plement a ‘fire and forget’ method for all non-critical functions, and to re-

peat the command for all critical functions until a valid response has been

received (can sometimes take up to ten retries). The critical functions are

the power-on and power-off functions, because they have an inherent lag

to them during which no commands can be sent to the beamer until it re-

turns to a ready state, and the mirroring function, because it persists

through a power cycle of the projector.

As a side effect, all preset tiles are blocked from operating until the beam-

er is in a ready state, to avoid conflicting operations. In addition, the whole

beamer user control is blocked when there is an operation taking place that

requires an acknowledgement.

26

 ASCII: American Standard Code for Information Interchange: a character set encoding that translates

characters and control codes to a 7-bit binary code.

Custom domotics system for use in an auditorium

64

Figure 53 Data projector user control

Figure 54 Data projector user control in a busy state

Custom domotics system for use in an auditorium

65

5.7 Practical implementation

With all of the user controls now made, a final layout could be made. To

do so, the home screen was divided in a grid, as illustrated in the design

sketches previously shown.

Practically, that meant creating a 2x2 grid in XAML, and combining the

bottom two cells into one. Margins were added to leave some room be-

tween the visual elements.

To display the tiles, a wrappanel has been used. This control automatically

places its children elements next to each other, starting a new line if neces-

sary. The advantage is that, when the child elements are sized uniformly,

and their margins are set the same, they become laid out in a nice and or-

derly grid. Both the preset tiles and the UI tiles at the bottom of the screen

are enclosed in such a wrappanel, albeit in two different ones.

Figure 55 Final layout of the home screen

The shortcuts are simple chromeless buttons in a listbox, which automati-

cally orders its elements in a list. The advantage is that its collection of el-

ements can be accessed as an enumerable object in the code-behind, so the

code does not have to keep a reference to each button as it is created. In-

stead, it just looks up the button in the collection of the listbox, and only

keeps a reference to said listbox.

Custom domotics system for use in an auditorium

66

Figure 56 Manual control screen

The manual controls are all enclosed in their respective tab panels. The

beamer control is enclosed in its own panel because it is just one user con-

trol instance. The other controls are also arranged in their tab using a

wrappanel, just like the tiles on the home screen. And, like the listbox, the

wrappanel keeps track of its children elements’ references to reduce the

use of hard-coded objects in the main program.

As illustrated by Figure 56, there can be multiple different UI elements

enclosed in the same wrappanel, as long as due care is taken with regards

to the width and margin of each element. In order not to break the visual

structure, the elements should line up nicely next to, and above and under

each other.

Even if multiple different elements exist in the same parent element, the

program can still differentiate between them when it cycles through the

child elements in order to get a reference to a specific object (for example,

to execute a command that was bound to a preset tile). When it requests all

child elements of the parent object, the program simply includes a specifi-

er to indicate which type of child elements it is expecting, in order to

avoid casting errors and subsequent crashes.

Custom domotics system for use in an auditorium

67

5.8 Abstraction of the room parameters

After all the user controls are made up, they should be placed within the

program in a dynamic fashion, taking the room’s requirements and equip-

ment into account. This is a major point of functionality, because it allows

the program to be reused in a different environment with the same periph-

erals, simply by changing a configuration file.

XML was chosen as the mark-up language for the configuration file, be-

cause it is fairly intuitive. In XML, the document represents a tree struc-

ture of objects, each object represented by an opening and a closing tag

with its name. The opening tag contains any properties that the object

might have, and between the opening and closing tags are the child ele-

ments of the object. This way, a tree structure can be illustrated by draw-

ing the objects’ relation to each other.

Figure 57 Extract from a configuration file

By interpreting this configuration file when the program starts up, all rele-

vant objects can be loaded dynamically, and placed in their right boxes. Of

course, when there is a mistake in the configuration file, the program will

malfunction too. Subsequently, care has to be taken when creating the

configuration file.

Basic layout of the configuration file

The basic layout of the configuration file is as follows:

 The whole configuration file is enclosed within a ‘Settings’ tag.

 The global variables are enclosed in a ‘Preferences’ tag, and have to

be defined:

o The PIN code for exiting the program and activating the

debug mode, is defined as the property ‘pin’ of a tag ‘PIN’.

o The contrasting colour, and the default start-up theme are

defined in the tag ‘Interface’, as properties ‘accent’ and

‘theme’ respectively. Acceptable values for ‘theme’ are ei-

ther ‘Light’ or ‘Dark’, and the colour can be chosen from

‘Blue’, ‘Green’, ‘Orange’, ‘Purple’ and ‘Red’.

 The available serial ports of the PC have to be defined in a ‘Serial-

Ports’ tag.

o Each serial port is a ‘Port’ tag, with the properties:

 ‘name’: the system name, for example ‘COM2’

Custom domotics system for use in an auditorium

68

 ‘alias’: the name that we will use in the configura-

tion file to reference this port

 ‘speed’: the baudrate on which the port should be

initialized

 ‘databits’ the amount of databits per transmission

 ‘stopbits’: the amount of stopbits per transmission

 ‘parity’: whether parity should be calculated. Possi-

ble values are ‘none’, ‘even’ and ‘uneven’.

 The relay cards that are attached to our own bus system are defined

within a <ExtensionCards> tag.

o Each relay card has its own <Card> tag, with the proper-

ties:

 ‘number’: the number by which we will reference

this card in the configuration file.

 ‘type’: the type of card. At this moment, only the

type ‘relay’ can be used.

 ‘ports’: how many relays there are on the card. Can

be used for possible future cards with more or less

relays per card.

 ‘address’: the address on the bus of the relay card

 ‘interface’: the alias of the serial port on which the

card is located.

o Each relay card can also have an extension card, which is

added within the Card tag with an <Extension> tag. The

Extension tag has the following properties:

 ‘type’: the type of extension. Currently, only ‘au-

dio’ exists.

 ‘name’: the name with which the extension func-

tionality will be referenced.

 ‘channel’: only for audio extensions. Indicates the

audio channel of the card (0 or 1).

 ‘name.EN’, ‘name.FI’ and ‘name.SE’: The name of

the extension that should be displayed to the user, in

each language.

 The additional, controllable equipment is defined in the ‘Peripherals’

tag. Possibilities are:

o <Beamer>, with the properties:

 ‘type’: type of the beamer

 ‘interface’: the alias of the serial port on which the

beamer is located.

 Currently, only one beamer can be defined, and on-

ly the type ‘LCX71’ is implemented.

o <MatrixSwitch>, with the properties:

 ‘type’: type of the switcher. Currently, only

‘VS1202’ and ‘VGArs4’ are implemented.

 ‘interface’: the alias of the serial port on which the

switcher is located.

 ‘name’: the name with which the switcher shall be

referenced in the configuration file.

o Each MatrixSwitch has multiple inputs and outputs, defined

by <Input> and <Output> tags with the properties:

Custom domotics system for use in an auditorium

69

 ‘name’: name with which the input or output will be

referenced.

 ‘pos’: the number of the input on the switch

 ‘bus’: the bus on which the input or output is locat-

ed (only for VS1202)

 ‘type’: if the input or output is used for ‘audio’ or

‘video’, so that it can be displayed in the right panel

(only for VS1202)

 ‘name.EN’, ‘name.FI’ and ‘name.SE’: The name of

the input or output that should be displayed to the

user, in each language.

o <SwitchedOutlet>, with the properties:

 ‘name’: name with which the outlet will be refer-

enced

 ‘card’: the address of the relay card on which the

controlling relay is located

 ‘port’: the zero-based number of the relay, on the

given relay card, that controls the outlet

 ‘name.EN’, ‘name.FI’ and ‘name.SE’: The name of

the outlet that should be displayed to the user, in

each language.

 Lights and blinds, the basic functionality of this program, are located

between <AuditoriumDefinition> tags.

o Lights are defined in a <Lights> tag, with each light con-

trol represented by a <Light> tag with the properties:

 ‘type’: currently, only ‘basic’ is supported (on or off

type of light control)

 ‘name’: name with which the light will be refer-

enced

 ‘name.EN’, ‘name.FI’ and ‘name.SE’: The name of

the light that should be displayed to the user, in

each language.

o Blinds are defined in a <Curtains> tag, with each blind

control represented by a <Curtain> tag with the proper-

ties:

 ‘type’: ‘blind’ or ‘projection’

 ‘name’: name with which the blind will be refer-

enced

 ‘timeout’: for the blind type, number of millisec-

onds that the blind needs for a full opening or clos-

ing.

 ‘timeout.up’ and ‘timeout.down’: for the projection

type, number of milliseconds the screen needs for,

respectively, a full upwards or downwards motion.

 ‘name.EN’, ‘name.FI’ and ‘name.SE’: The name of

the blind that should be displayed to the user, in

each language.

 The location of the relays that control the upwards

and downwards motion, are defined with <Con-

trol> tags within the <Curtain> tag, and with

the properties:

Custom domotics system for use in an auditorium

70

 ‘type’: ‘up’ or ‘down’

 ‘card’: address of the relay card on which

the relay is located

 ‘port’: zero-based number of the relay on the

relay card.

 Tiles and shortcuts for the program are defined within a <Start-

Buttons> tag.

 Each tile on the home screen is a <Tile> tag, and can contain zero,

one, or multiple commands that will be executed on clicking it. The

<Tile> tag itself has the following properties:

o ‘name’: name with which the tile is referenced

o ‘name.EN’, ‘name.FI’ and ‘name.SE’: The title of the tile

that should be displayed to the user, in each language.

o ‘width’: can be either 1 or 2, and equals the width of the tile

in units. 1 is a standard tile, 2 is a double tile.

o ‘visual’: the name of the primary icon. For a list of names,

please consult the file ‘Icons.xaml’ in the project directory.

o ‘visual1’: the name of the icon that will appear next to the

one defined in ‘visual’, in the case of a double tile. Both

icons will be separated by a ‘plus’ sign.

 Each shortcut in the shortcut list is a <Shortcut> tag, and, like the

tiles, can contain an arbitrary number of commands that will be exe-

cuted when the shortcut is activated. The <Shortcut> tag contains

the following properties:

o ‘name’: name with which the shortcut is referenced

o ‘name.EN’, ‘name.FI’ and ‘name.SE’: The text on the

shortcut that should appear to the user, in each language.

The commands that can be attached to the defined tiles and shortcuts, are

defined with a <Command> tag. Which commands can be assigned, de-

pends on the available equipment, and the defined interactions within the

program. Each command has a ‘type’, ‘value’ and ‘target’ property, of

which the meaning should be pretty self-explanatory. At the moment of

writing, the following command types are available:

 ‘light’: to control a light. Possible values are ‘on’ or ‘off’, and the tar-

get is the name of the light that needs to be controlled. Target can also

be ‘all’, with which the specified action is applied to all defined lights.

 ‘curtain’: to control a blind. Possible values are ‘up’ and ‘down’, and

the target is the name of the blind that needs to be controlled.

 ‘volume’: is used to control the volume of a volume extension card.

The value is the value of the volume that is requested, between 0 and

64, and the target is the name of the volume channel, as defined in the

Extension section of the relay cards.

 ‘mute’: is used to control the mute function of a volume control. Val-

ue is either ‘on’ or ‘off’, and the target is the name of the volume

channel.

 ‘VSource’: to select an input on a video switcher. Value is the name of

the input that needs to be selected, target is the name of the switcher

on which the input is located.

Custom domotics system for use in an auditorium

71

 ‘ASource’: same as ‘VSource’, but for the audio part of the switcher.

 ‘beamer’: is used to control the beamer. If the target is ‘power’, possi-

ble values are ‘on’ or ‘off’ to switch the beamer to the respective pos-

er state. Target ‘input’ can be used with the values 1, 2 and 3 to have

the beamer select either input 1, input 2, or input 3.

With this information, it should be possible to create arbitrary configura-

tions. When in doubt, consult the sample configuration file supplied on the

attached CD.

5.9 Future extensions

The application was designed with expandability in mind. In the list below

are the guidelines which should be followed when an extension needs to

be created and implemented:

 If there is a need for a new user control, create that user control and all

necessary interaction logic, and put it in the ‘Controls’ folder. In par-

ticular, take care to add translation functionality to the control. When

in doubt, take a look at the provided controls for reference.

 Please also include a Debug event in the user control that raises each

time a relevant action is taken, and includes a human-interpretable

string as sender, detailing what happened.

 In the file ‘MainWindow.xaml.cs’, all main logic for the application is

programmed.

o The configuration file is parsed in the method ‘Configura-

tionRead’. All new objects are created there, their parame-

ters are set at the moment of creation, and they are added to

the respective tab panel. The DebugHandler is also added

to the Debug event of all user controls. Please see the ex-

amples in that method for practical information about how

to implement a new control.

o The commands are parsed with the method ‘ExecuteCom-

mand’. To define a new command, please insert the han-

dling logic there, as well as the lookup of the corresponding

object in the tab panels. For examples, please consult the

code that has already been written.

o The language function is the method ‘Change-

Language_Click’. For a new user control, please insert a

line to change that control’s language property to the ‘cur-

rentLanguage’ variable, and take care to update the display

language of the control at the moment the language is up-

dated. The language is a two-character string: “EN” for

English, “FI” for Finnish, and “SE” for Swedish.

Custom domotics system for use in an auditorium

72

6 INSTALLATION IN AUDITORIUM A

The new control system is not only designed by us, but also installed.

Firstly, we started updating auditorium A. This is the oldest auditorium,

and is the most in need of an update

6.1 Key panel

The first step we took was to replace the keypad controller with a control-

ler of our own design. This was made possible by the already present

three-core cable, of which two cores are used for bidirectional data trans-

fer, and one for the common reference.

At first we tried to connect the keypad controller to the cable at one end,

and a relay card at the other end of the cable for testing. The temporary re-

lay card was still powered by a laboratory power supply. For the perma-

nent installation, the data cable, arriving in the switching cabinet, was

connected to a shielded twisted pair cable running to the A/V-rack. This

twisted pair was the signal cable previously used to control the Helvar

dimmers from the transfer module connected to the Crestron system.

6.2 Beamer

The beamer used in this auditorium is suspended above the audience at a

height of three meters above a seated person. The ceiling at this point is

4.20 meters above the ground. When looking more closely at beamer, the

missing serial cable connection was noticed.

When following the other data cables, such as the VGA and video cables,

a multi-core cable in the ceiling was found. On one of its cores was a

standard D-SUB9 male connector attached, which is the de facto standard

for an RS232 connection. The other end of this cable ran back to the 19”

rack where it was patched into the Crestron system.

.

A new pigtail cable had to be made because the serial control port of the

beamer in auditorium A uses a mini-DIN 8 male connector. Discovering

the serial cable was already available, and running from the rack to the

beamer, was a great help due to the height of the ceiling. We were not sure

if we would be able to reach the ceiling all the way to the beamer, in order

to install a new cable.

After making this pigtail cable from D-SUB 9 to mini-DIN 8, we started

testing the beamer commands. The connection between beamer and pc

was very poor. The beamer doesn’t always respond in an orderly fashion

to the commands given by the controller.

To improve the connection between the pc and the beamer we opted to use

another twisted pair inside the multi-core cable. This seemingly improved

the communication a bit, but some responses were still dodgy at best.

Eventually we just gave up, and used the communications cable as-is.

Custom domotics system for use in an auditorium

73

6.3 Video switches.

The next devices of which the communications were checked, are the

VGA-switch at the lecturer’s desk, and the 2x12 A/V-switch matrix in the

technical room. During the testing of these protocols, the only problem

encountered was the wiring of the VGA-switch. The datasheet of the

VGA-switch stated a crossed
27

 cable should be used. Eventually a

straight
28

 cable was proven to be needed in order to communicate with this

switch.

6.4 Wiring

In a project like this, it is important to keep all wiring structured. This is to

keep an overview during the installation. It is also to keep things easy to

understand with regards to future service by others. Some wires were kept

for their original function; others got reused for other functions.

The backbone of our system are the serial ports on the touchscreen pc.

Connecting these ports with terminals in the technical room at the back of

the auditorium proved to be a big challenge. At least three separate com-

munication channels had to be available. During the installation, we also

had to think aesthetical, so a proper serial connection point was mounted

in the lecturer’s desk, providing the right type of connectors: D-SUB 9.

Figure 58 RS232 connectors on the lecturers desk

The cables used for this connection are straight male-female cables. This

way they are used as an extension cable to extend the serial port connec-

tion of the computer to the outlet now mounted in the desk.

The connection from this point on is made with a shielded Cat 5e cable

which was already installed, and was unused. This cable runs all the way

to the technical room, has shielded RJ45 female connectors attached at

27

 The RX and TX pins are switched on the other end of the cable
28

 The RX and TX pins of the cable stay on the same place

Custom domotics system for use in an auditorium

74

both ends, and is ideally suited to contain the three communication lines.

Three twisted pairs of the cable are used for the data lines, and the fourth

twisted pair is used to connect the reference voltage. Each twisted pair

represents a serial port of the pc. The full-coloured wire is connected to

pin two of the D-SUB 9 connector, and the striped wire is connected to the

third pin of the connector. These wires are connected in the 19” rack to

screw terminals, to ease the local patching work. The wire pairs are la-

belled with the numbers of their connection point in the desk, and mount-

ed in the same order. The full-coloured wire is always connected first. If a

crossed cable is needed to control the specific device, the crossing of the

cable happens after these terminals. This is to avoid double crossing, and

as such end up with a straight cable.

These screw terminals also are the patch point to connect our relay cards

to the mains switching cabinet.

Figure 59 Screw terminals with serial communications and relay cables

The connections on the bottom row of the photograph are the cables which

run to and from the 19” rack. The cables on the top row are the patch ca-

bles within the rack. On the left side of the figure, an extra screw terminal

is visible. This is the connection running to the keypad at the door. Across

the keypad terminal, a piece of breadboard PCB is visible. The LM7805

voltage regulator which regulates the voltage to the audio cards is soldered

on this piece of circuit board.

On the main terminal block (Figure 60), the connections are, from left to

right: six light relays, the A/V-switch’s serial communications line, the re-

lay cards’ serial communications line, the beamer’s communications line,

the left blinds’ up and down contacts, the right blinds’ up and down con-

tacts, the projection screen’s up and down contacts, and last but not least

the connection to the switchable power outlets’ relay contacts. All the re-

lays have a common connection; this common connection is the rightmost

screw terminal on the photograph.

Custom domotics system for use in an auditorium

75

Figure 60 Screw terminals for A/V signals and power

To the left of the A/V-signal connections, two power connections are in-

stalled. The leftmost one is the +5VDC output of the LM7805. It is used

as a power supply for the volume control cards. Immediately to the right

of it is the power supply connection for the relay cards. The power supply

for the relay cards isn’t as ripple-free as it needs to be for the audio. The

reason for this was explained previously in this document.

Next to the power supply connections, is the connection between the am-

plifier and speakers. To the right of that one are the audio lines from the

PC and laptop connection point at the desk. They are both stereo signals,

and each channel has its own ground reference. After these four audio-

feeds, three mono feeds are connected. Two of these stem from uncon-

nected points under the desk, and are plugged straight into the mixer. The

third microphone is situated at the lecturer’s desk, and connected to a vol-

ume control unit before it is plugged into the mixer.

To the right of the mic feeds, the beamer’s serial communication signal is

connected, leaving the 19” rack and going to the beamer. The other end is

internally patched through to the connection point going to the PC, as

mentioned earlier.

Next to the serial communication lines going to the beamer, several screw

terminals are present in order to distribute the +24V supply rail which

drives the relays on both the relay cards and in the fuse cabinet.

This rail has so many connections, because CresNet was previously also

connected on these terminals.

6.5 Installation of the relay cards

The back of the 19” rack is made out of a hardened metal. To mount

something on this plate, you would need to drill a hole and tap a screw

thread for screws or bolts.

The Crestron system previously had its own external relay cards which

were mounted on the plate, also having the size of a eurocard. The solu-

tion to mount our relay cards was to reuse the existing holes to mount all

relay cards.

A black polycarbonate plate was used to premount all the relay cards.

They were mounted on the plate using nylon screws and spacers. Once

this procedure was finished, the complete setup was mounted to the back

Custom domotics system for use in an auditorium

76

of the rack using the fixing points already available from the Crestron ex-

pansion cards.

Figure 61 Our relay cards mounted in the 19” rack

Both relay cards have the expansion card for volume control and extra dig-

ital I/O ports. However, in this situation the I/O port expander is not in

use.

The power link cables of the +5V and +24V supply rail are pre-mounted

on the backside of the mounting panel. The power supply connections

themselves, however, do not run underneath the panel. They run through

the cable guides to their respective screw terminals.

6.6 Touchscreen-PC enclosure

When all wiring was done, and all extra hardware was successfully in-

stalled, the housing unit for the touchscreen-PC arrived. The design was

done by our friend and colleague Riemert Viaene, and it was built by the

vocational school in Valkeakoski. When test-fitting the touchscreen for a

trial run, the need to have ventilation holes surfaced.

Figure 62 Testing the touchscreen computer in its custom housing

Custom domotics system for use in an auditorium

77

These ventilation holes were drilled in the sides of the housing, in a hex-

agonal pattern. After the addition of the ventilation holes, the housing was

spray painted with a matte black paint.

.

Figure 63 Completed touchscreen enclosure

Custom domotics system for use in an auditorium

78

6.7 Block diagram

After all modifications were made, a block diagram of the current situation

with regards to the control system was created.

video

15"

touchscreen
Relay cards

Mic

Volume
Control

Mixer

Lecturer’s desk

AV-switch

BeamerVGA switch

PC-audio

Laptop-audio

From AV/switch

Serial com

Amplifier

Slide
Projector

Blinds Up/
Down

Light Relays

Power outlet
groups

R
elay-o

u
tp

u
ts

I²C

To beamer

Volume
Control

I²C

Volume
Control

Wireless
Mic

I²C

KEY-pad control

Serial com

External
video 1

External
video 2

Serial communications

Relay outputs
I²C
Serial communication

Audio

Figure 64 Auditorium A: new situation (block diagram)

If this diagram is compared to the previous state of the auditorium, the

main additions are the multiple volume control units, the bus controlled re-

lay cards, and a working beamer interface. The Crestron control unit is

now taken out of service, and the whole auditorium is running on our own

custom developed automation system.

Custom domotics system for use in an auditorium

79

7 CONCLUSIONS

The installation of the new control unit for the auditorium resulted in a us-

er-friendly control interface for this multi-purpose room. The touchscreen

displays big multi-lingual and colourful buttons to create an intuitive con-

trol environment.

The control software has both an easy and intuitive preset window for the

occasional user, and a manual control window where every function of the

system can be adjusted to satisfy the more demanding users.

The complete control unit is mounted at a 45° angle in a clearly visible

black housing located on the lecturer’s desk. Part of the design was to

draw the attention of someone who wants to control the system for the

first time.

Four serial communication channels are leaving the control unit. One re-

mains at the lecturer’s desk in order to control the VGA switch. The other

three are connected to numbered connection ports mounted in the desk.

The communication channels run up to the technical room in order to con-

trol the beamer, the 2x12 A/V-switch and the custom-designed relay and

expansion cards.

The custom relay cards are located in the 19” rack, and mounted on its

back panel. Both cards are equipped with an extension card to control the

volume of the microphones, the external audio and the main volume.

Both the touchscreen control unit and the keypad next to the entrance door

control these relay cards. If one of them changes the state of a light, it al-

ways updates the other one to keep synchronisation.

By replacing the control system with our own, both functionality and user-

friendliness have been improved. Adaptations to the system are now more

easily implemented. And, last but not least, all technical files and details

are available and up-to-date to enable any interested party to make chang-

es to the system.

Custom domotics system for use in an auditorium

80

SOURCES

BSS. (n.d.). BSS Audio sw9088iis. Retrieved February- May 2012, from BSSaudio:

http://www.bssaudio.com/discont_productpg.php?product_id=31

CadSoft. (n.d.). Downloads. Retrieved February 2012, from CadSoftUSA:

http://www.cadsoftusa.com/download-eagle/?language=en

Crestron programmers group. (n.d.). Retrieved February 2012, from tech.groups.yahoo:

http://tech.groups.yahoo.com/group/Crestron/

Helvar. (n.d.). discontinued products. Retrieved April 2012, from helvar:

http://www.helvar.com/default.asp?path=3386,3660&article=5331&lan=EN&se

arch=true&index=X&page=1

Howie, J. (2008, December 03). NEC Infrared Transmission. Retrieved April 2012,

from altium:

http://wiki.altium.com/display/ADOH/NEC+Infrared+Transmission+Protocol

Maxim. (2002, June 27). Using a DS1802 Push-Button Digital Potentiometer. Retrieved

April 2012, from maxim-ic: http://www.maxim-ic.com/app-

notes/index.mvp/id/0161

microchip. (n.d.). PIC18F24K22. Retrieved February 2012, from Microchip

Technology Inc:

http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en547749

Microsoft. (n.d.). .NET Common Language Overview. Haettu March through May 2012

osoitteesta Microsoft Developers Network: http://msdn.microsoft.com/en-

us/library/ddk909ch.aspx

MikroElektronika. (n.d.). mikroC pro for pic Language reference. Retrieved February

2012, from mikroelektronika:

http://www.mikroe.com/download/eng/documents/compilers/mikroc/pro/pic/hel

p/mikroC_PRO_language_reference.htm

Moser, C. (n.d.). A collection of WPF tutorials. Retrieved March through April 2012

from WPF tutorials: http://www.wpftutorials.net

SB projects. (2011, May 29). IR Remote Control, JVC Protocol. Retrieved April 2012,

from SBprojects: http://www.sbprojects.com/knowledge/ir/jvc.php

SB-projects. (2011, May 29). IR Remote Control, NEC Protocol. Retrieved April 2012,

from sbprojects: http://www.sbprojects.com/knowledge/ir/nec.php

Stephens, R. (2010). WPF Programmer's Reference: Windows Presentation Foundation

with C# 2010 and .NET 4. USA: Wrox.

http://www.bssaudio.com/discont_productpg.php?product_id=31
http://www.cadsoftusa.com/download-eagle/?language=en
http://tech.groups.yahoo.com/group/Crestron/
http://www.helvar.com/default.asp?path=3386,3660&article=5331&lan=EN&search=true&index=X&page=1
http://www.helvar.com/default.asp?path=3386,3660&article=5331&lan=EN&search=true&index=X&page=1
http://wiki.altium.com/display/ADOH/NEC+Infrared+Transmission+Protocol
http://www.maxim-ic.com/app-notes/index.mvp/id/0161
http://www.maxim-ic.com/app-notes/index.mvp/id/0161
http://www.microchip.com/wwwproducts/Devices.aspx?dDocName=en547749
http://msdn.microsoft.com/en-us/library/ddk909ch.aspx
http://msdn.microsoft.com/en-us/library/ddk909ch.aspx
http://www.mikroe.com/download/eng/documents/compilers/mikroc/pro/pic/help/mikroC_PRO_language_reference.htm
http://www.mikroe.com/download/eng/documents/compilers/mikroc/pro/pic/help/mikroC_PRO_language_reference.htm
http://www.wpftutorials.net/
http://www.sbprojects.com/knowledge/ir/jvc.php
http://www.sbprojects.com/knowledge/ir/nec.php

Custom domotics system for use in an auditorium

81

Unknown. (n.d.). MahApps.Metro: a metro-styled WPF theme. Retrieved March 2012

from MahApps: http://mahapps.com/MahApps.Metro/

WinLIRC. (n.d.). index of remotes. Retrieved April 2012, from winlirc:

http://lirc.sourceforge.net/remotes/

http://mahapps.com/MahApps.Metro/

Custom domotics system for use in an auditorium

Appendix 1

APPENDIX 1: Original work plan

Goal description deadline

Analysis of the current sys-

tem

Analysing and checking

the plans and wire-

schematics of the exist-

ing system

25.02.2012

Implementation of beamer

protocols

Implementation of the

communication protocol

used by the beamers.

28.02.2012

Design relay-card Designing the schemat-

ics and PCB-layout used

to control the relay-

switches currently used.

Component selection.

27.02.2012

Design firmware relay-card Programming a custom

designed protocol to

control the relay-cards.

10.03.2012

Implement relay-card Etching and soldering

the pcbs.

19.03.2012

Test relay-cards Controlling a chain of 4

relay-cards by means of

the designed protocol

19.03.2012

Design expansion-card Designing the schemat-

ics an pcb-layout for the

expansion-card used as

volume-control and port-

expansion.

Component selection.

31.03.2012

Implement expansion-card Etching and soldering

the pcbs.

14.04.2012

Test expansion-card Adjusting volume and

using extra i/o-ports by

means of the

touchscreen computer

14.04.2012

Design GUI Designing a user-

friendly interface to con-

trol the whole system.

20.04.2012

Design IR-card Designing the schemat-

ics and pcb-layout for de

IR-card. This card will

be used to control devic-

es that use IR.

Component selection.

28.04.2012

Light control Analyse the existing

HELVAR-system and

control it by the port

expanders on the expan-

sion-card.

1.05.2012

Custom domotics system for use in an auditorium

Replace the system in A-

auditorium

Installing a complete

system in the A-

auditorium and testing

5.05.2012

Implement IR-card Etching and soldering

the pcbs.

12.05.2012

Designing firmware IR-card Designing protocol and

firmware of the IR-card,

so it can control a specif-

ic device.

20.05.2012

Test IR-card Control all the devices

by use of the IR-card

20.05.2012

Reverse engineer dsp-

protocol

Research for the control-

protocol to control the

digital signal processor

used in the B-auditorium

20.05.2012

Replace the system in B-

auditorium

Installing a complete

system in the B-

auditorium and testing

1.06.2012

Thesis document The thesis document has

to be finished.

1.06.2012

Thesis presentation Defending the thesis

Custom domotics system for use in an auditorium

APPENDIX 2: Reversing the SoundWeb protocol

The DSP used in auditorium B is a BSS SoundWeb-series processor. This

is a networked DSP and can be linked to other units. It is also controllable

trough a serial communications link.

The SoundWeb is a programmable DSP which can be programmed to the

specific needs of the end user. The ability to customise the system makes

it very hard to determine the commands needed to control an existing con-

figuration.

To be able to control and reuse the DSP we needed to ‘sniff’ the serial

communications. BSS provided us with an application to transmit com-

mands to the DSP, and a PDF file containing the protocol definitions. By

sniffing the commands sent by the Crestron system, and matching the data

to the BSS specification, an insight in the protocol was achieved.

The SoundWeb protocol has various similarities with our own protocol

conceived to control the relay cards.

Structure of a SoundWeb message

A command consists out of 4 parts. A start byte starts the message. The

body contains the actual command. The checksum is used to verify the

command, and lastly a stop byte is used to mark the end of the message.

When a command is received, the receiving device should answer with an

ACK
29

 response, within one second after receiving the command. When

nothing or a NAK
30

 is received by the transmitter, the command is reis-

sued.

The protocol has some reserved values. These are the start and stop byte,

the ACK and NAK bytes, and the escape character.

 0x02 STX

 0x03 ETX

 0x06 ACK

 0x15 NAK

 0x1B escape

When one of these values needs to be used in the body of the message,

they are replaced by the following values:

 0x02 0x1B 0x82

 0x03 0x1B 0x83

 0x06 0x1B 0x86

29

 Acknowledge
30

 Not Acknowledged

Custom domotics system for use in an auditorium

 0x15 0x1B 0x95

 0x1B 0x1B 0x9B

The body starts with a byte which indicates what will be done. This means

to set or request a value of the DSP. These bytes are respectively 0x80 and

0x82. This control byte defines the meaning of the other bytes in the mes-

sage’s body.

SET_VALUE structure of the BSS protocol.

When SET_VALUE is selected, at least
31

 four extra bytes are needed.

The first byte defines which value will be changed. For example, when the

audio will be adjusted, this byte will be 0x05.

The second byte is the identifier byte. This byte specifies which control of

the group, defined by the previous byte, will be adjusted. For example, in

auditorium B, this ID will be 0x1B83. As mentioned before, this is be-

cause the actual value 0x03 is a reserved character.

The two following bytes, which are the last bytes of the body, are the 16-

bit value that can be given to the DSP parameter. When the level is

changed like in the example given here, the high byte remains 0x00. This

means the audio level can be adjusted on an 8bit scale, so values can

change between 0x00 and 0xFF, 0x00 being mute.

After the body, a checksum is added. This checksum is used to verify

whether the data has been received correctly or not. The checksum is an

XOR function of all the bytes from the body. In case a reserved byte is

used in the body, the original value will be used to calculate the checksum

and then is changed to a special byte. It is important to note that when the

checksum is one of the reserved values, it is replaced by the alternative,

just as if it were a body byte.

31

 When a special value is used as data byte, it has to be replaced by two bytes

Custom domotics system for use in an auditorium

APPENDIX 3: Relay card schematic and PCB layout

Custom domotics system for use in an auditorium

Custom domotics system for use in an auditorium

APPENDIX 4: volume control and I/O port extension schematic and PCB layout

Custom domotics system for use in an auditorium

Custom domotics system for use in an auditorium

APPENDIX 5: Keypad schematic and circuit implementation

Custom domotics system for use in an auditorium

